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in the subsequent ones, but a priori we do not know if F, is isomorphically
embedded in E, i.e. if the topology induced by 7;,q on E, is identical to
the topology 7, initially given on FE,,. This is indeed true and it will be a
consequence of the following lemma.

Lemma 1.3.3. Let X be a locally convex t.v.s., Xg a linear subspace of X
equipped with the subspace topology, and U a convex neighbourhood of the
origin in Xg. Then there exists a convex neighbourhood V' of the origin in X
such that VN Xy =U.

Proof.

As X carries the subspace topology induced by X, there exists a neighbour-
hood W of the origin in X such that U = W N Xj. Since X is a locally convex
t.v.s., there exists a convex neighbourhood Wy of the origin in X such that
Wo C W. Let V be the convex hull of U UWj. Then by construction we have
that V is a convex neighbourhood of the origin in X and that U C V which
implies U = U N Xy C VN Xy. We claim that actually V N Xg = U. Indeed,
let x € VNXy; asxz €V and as U and Wy are both convex, we may write
r=ty+(1—t)zwithyecUzecWyandt e [0,1]. If t=1,thenz =y e U
and we are done. If 0 < ¢ < 1, then z = (1 — t)~!(x — ty) belongs to X, and
soz € WonNXg C Wn Xy = U. This implies, by the convexity of U, that
x €U. Hence, VN Xy CU. ]

Proposition 1.3.4.
Let (E, Tinq) be an LF-space with defining sequence {(E,, 1) : n € N}. Then

Tind | En = ™, Yn € N.

Proof.

(C) Let U be a neighbourhood of the origin in (E, 7;,,4). Then, by definition
of 7Tina, there exists V' convex, balanced and absorbing neighbourhood of the
origin in (E, Tyq) s.t. V C U and, for each n € N, V N E,, is a neighbourhood
of the origin in (E,, 7,). Hence, Ting [ En C 7, Vn € N.

(2) Given n € N, let U,, be a convex, balanced, absorbing neighbourhood
of the origin in (E,, 7,). Since E,, is a linear subspace of E,, 11, we can apply
Lemma 1.3.3 (for X = E,+1, Xo = E, and U = U,) which ensures the
existence of a convex neighbourhood U, 1 of the origin in (Fj,41, Tht1) such
that U,4+1 N Ep, = U,. Then, by induction, we get that for any k € N there
exists a convex neighbourhood U, of the origin in (F, 1k, T1x) such that
Upnirk N Epik—1 = Unik_1. Hence, for any k € N, we get U,y N E, = U,. If
we consider now U := |Ji2; Up4g, then U N E,, = U,. Furthermore, U is a
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neighbourhood of the origin in (E, 7,4) since UNE,, is a neighbourhood of the
origin in (E,,, 7,) for all m € N. We can then conclude that 7, C 7jq | En,
Vn € N. ]

From the previous proposition we can easily deduce that any LF-space is
not only a locally convex t.v.s. but also Hausdorff. Indeed, if (E, 7j,4) is the
LF-space with defining sequence {(E,,7,) : n € N} and we denote by F (o)
[resp. Fp(0)] the filter of neighbourhoods of the origin in (F, 7;,4) [resp. in
(Ey, )], then:

Nv= Nva(Us)-U nons=y 1 o-o,

VeF(o) VeF(o) neN neNVeF(o neNU, eF,(

which implies that (E, 7,4) is Hausdorff by Corollary 2.2.4 in TVS-I.
As a particular case of Proposition 1.3.1 we get that:

Proposition 1.3.5.
Let (E,Tina) be an LF-space with defining sequence {(Ey,T,) : n € N} and
(F,7) an arbitrary locally convex t.v.s..
1. A linear mapping u from E into F is continuous if and only if, for each
n € N, the restriction u [ E, of u to E, is continuous.
2. A linear form on E is continuous if and only if its restrictions to each
FE,, are continuous.

Note that Propositions 1.3.4 and 1.3.5 hold for any countable strict induc-
tive limit of an increasing sequences of locally convex Hausdorff t.v.s. (even
when they are not Fréchet).

The following results is instead typical of LF-spaces as it heavily relies on
the completeness of the t.v.s. of the defining sequence.

Theorem 1.3.6. Any LF-space is complete.

Proof.

Let (E, Tjnq) be an LF-space with defining sequence {(E,, 7,) : n € N}. Let F
be a Cauchy filter on (E, 7;pq). Denote by Fg(o) the filter of neighbourhoods
of the origin in (F, 74,4) and consider

G ={ACE: ADM+YV forsome M € F,V € Fg(o)}.

1) G is a filter on E.
Indeed, it is clear from its definition that G does not contain the empty set
and that any subset of F¥ containing a set in G has to belong to G. Moreover,
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for any Al,AQ € G there exist Ml,MQ S .F, VY1, Vo € .FE(O) st. M;+V; C Al
and My + Vo C As; and therefore

A1 NAs D (My+ V)N (My+ Vo) D (M N M)+ (Vi NVa).

The latter proves that A3 N As € G since F and Fg(o) are both filters and so
MiNMye Fand V1NV, € fE(O).

2) GC F.
In fact, for any A € G there exist M € F and V € Fg(o) s.t.

ADM+VOM+{0}=M

which implies that A € F since F is a filter.

3) G is a Cauchy filter on E.

Let U € Fg(o). Then there always exists V € Fg(o) balanced such that
V+V -V CU. As F is a Cauchy filter on (E, 7;,,4), there exists M € F such
that M — M C V. Then

M+V)—-(M+V)CM-M)+(V-V)CV4+V-VCU
which proves that G is a Cauchy filter since M +V € G.
It is possible to show (and we do it later on) that:
dpeN:VAeG ANE,#0 (1.13)
This property ensures that the family
G, ={ANE,: AcG}

is a filter on E,. Moreover, since G is a Cauchy filter on (E, 7,4) and since
by Proposition 1.3.4 we have 7,q [ E, = 7p, G, is a Cauchy filter on (E,, 7).
Hence, the completeness of I, guarantees that there exists v € E, s.t. G, — .
This implies that also G — x and so Fg(0) C G C F which gives F — z. [

Proof. of (1.13)
Suppose that (1.13) is false, i.e. Vn € N, 34, € G s.t. A, N E, = (. By the
definition of G, this means that

Vn eN, IM, € F, V,, € Fr(o), s.t. (M, + V,,) N E, = 0. (1.14)
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Since E is a locally convex t.v.s., we may assume that each V,, is balanced
and convex, and that V,,41 C V,, for all n € N. Consider

n—1
W,, := conv (Vn U U (Ve N Ek)) ;

k=1

then
(Wn+ M,)NE, =0,Yn € N.

Indeed, if there exists h € (W,,+M,)NE,, then h € E,, and h € (W, +M,,). We
may then write: h =x+ty+ (1 —t)z withz € M,,, y € V,,, z € ViNE,,_; and
t € [0,1]. Hence, z+ty = h—(1—t)z € E,. But we also have x+ty € M, +V,,
since V,, is balanced and so ty € V,,. Therefore, x +ty € (M,,+ V,,) N E,, which
contradicts (1.14).

Now let us define

W = conv (U (V&N Ek)) .
k=1

As W is convex and as W N E, contains Vj, N Ej, for all K € N, W is a
neighbourhood of the origin in (E, 7,4). Moreover, as (V,,)nen is decreasing,
we have that for all m € N

n—1 o) n—1
W = conv (U (Vi NEg) U U (Ve N Ek)> C conv (U (Vi NEg) U Vn> =W,.

k=1 k=n k=1

Since F is a Cauchy filter on (F, Tinq), there exists B € F such that B—B C W
and so B— B C W,,,Vn € N. On the other hand we have BN M,, # 0,Vn € N,
as both B and M, belong to F. Hence, for all n € N we get

B_(BﬁMn)gB_Banv
which implies
B C W, + (BN M,) C W, + M,

and so

BNE, C (W, +M,)nE, "2,

Therefore, we have got that BN E,, = ) for all n € N and so that B = (),
which is impossible as B € F. Hence, (1.13) must hold true. O
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Example I: The space of polynomials

Let n € N and x := (z1,...,%,). Denote by R[x] the space of polynomials in
the n variables z1,...,x, with real coefficients. A canonical algebraic basis
for R[x] is given by all the monomials

a

x® =it apt, Ya=(oq,...,0p) € Nj.

n o

For any d € Ny, let R4[x] be the linear subpace of R[x] spanned by all
monomials x* with |a] := " | a; < d, i.e.

Ra[x] := {f € R[x]|deg f < d}.

Since there are exactly ("gd) monomials x¢ with |a| < d, we have that
, (d+n)!

and so that Ry[x] is a finite dimensional vector space. Hence, by Tychonoff
Theorem (see Corollary 3.1.4 in TVS-I) there is a unique topology 7¢ that
makes Ry[x] into a Hausdorff t.v.s. which is also complete and so Fréchet (as it
topologically isomorphic to R%m(Ralz]) equipped with the euclidean topology).
As R[x] := J;2, Ra[x], we can then endow it with the inductive topol-
0gY Tina W.I.t. the family of F-spaces {(Rq[x],7d) : d € No}; thus (R[x], Tj5q)
is a LF-space and the following properties hold (proof as Exercise 1, Sheet 3):
a) Ting is the finest locally convex topology on R[x],
b) every linear map f from (R[x], 7;,4) into any t.v.s. is continuous.
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