
1. Special classes of topological vector spaces

in the subsequent ones, but a priori we do not know if E
n

is isomorphically
embedded in E, i.e. if the topology induced by ⌧

ind

on E
n

is identical to
the topology ⌧

n

initially given on E
n

. This is indeed true and it will be a
consequence of the following lemma.

Lemma 1.3.3. Let X be a locally convex t.v.s., X
0

a linear subspace of X
equipped with the subspace topology, and U a convex neighbourhood of the
origin in X

0

. Then there exists a convex neighbourhood V of the origin in X
such that V \X

0

= U .

Proof.
As X

0

carries the subspace topology induced by X, there exists a neighbour-
hood W of the origin in X such that U = W \X

0

. Since X is a locally convex
t.v.s., there exists a convex neighbourhood W

0

of the origin in X such that
W

0

✓ W . Let V be the convex hull of U [W
0

. Then by construction we have
that V is a convex neighbourhood of the origin in X and that U ✓ V which
implies U = U \X

0

✓ V \X
0

. We claim that actually V \X
0

= U . Indeed,
let x 2 V \ X

0

; as x 2 V and as U and W
0

are both convex, we may write
x = ty + (1 � t)z with y 2 U, z 2 W

0

and t 2 [0, 1]. If t = 1, then x = y 2 U
and we are done. If 0  t < 1, then z = (1� t)�1(x� ty) belongs to X

0

and
so z 2 W

0

\ X
0

✓ W \ X
0

= U . This implies, by the convexity of U , that
x 2 U . Hence, V \X

0

✓ U .

Proposition 1.3.4.

Let (E, ⌧
ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N}. Then

⌧
ind

� E
n

⌘ ⌧
n

, 8n 2 N.

Proof.
(✓) Let U be a neighbourhood of the origin in (E, ⌧

ind

). Then, by definition
of ⌧

ind

, there exists V convex, balanced and absorbing neighbourhood of the
origin in (E, ⌧

ind

) s.t. V ✓ U and, for each n 2 N, V \E
n

is a neighbourhood
of the origin in (E

n

, ⌧
n

). Hence, ⌧
ind

� E
n

✓ ⌧
n

, 8n 2 N.
(◆) Given n 2 N, let U

n

be a convex, balanced, absorbing neighbourhood
of the origin in (E

n

, ⌧
n

). Since E
n

is a linear subspace of E
n+1

, we can apply
Lemma 1.3.3 (for X = E

n+1

, X
0

= E
n

and U = U
n

) which ensures the
existence of a convex neighbourhood U

n+1

of the origin in (E
n+1

, ⌧
n+1

) such
that U

n+1

\ E
n

= U
n

. Then, by induction, we get that for any k 2 N there
exists a convex neighbourhood U

n+k

of the origin in (E
n+k

, ⌧
n+k

) such that
U
n+k

\ E
n+k�1

= U
n+k�1

. Hence, for any k 2 N, we get U
n+k

\ E
n

= U
n

. If
we consider now U :=

S1
k=1

U
n+k

, then U \ E
n

= U
n

. Furthermore, U is a
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1.3. Inductive topologies and LF-spaces

neighbourhood of the origin in (E, ⌧
ind

) since U\E
m

is a neighbourhood of the
origin in (E

m

, ⌧
m

) for all m 2 N. We can then conclude that ⌧
n

✓ ⌧
ind

� E
n

,
8n 2 N.

From the previous proposition we can easily deduce that any LF-space is
not only a locally convex t.v.s. but also Hausdor↵. Indeed, if (E, ⌧

ind

) is the
LF-space with defining sequence {(E

n

, ⌧
n

) : n 2 N} and we denote by F(o)
[resp. F

n

(o)] the filter of neighbourhoods of the origin in (E, ⌧
ind

) [resp. in
(E

n

, ⌧
n

)], then:

\

V 2F(o)

V =
\

V 2F(o)

V \
 
[

n2N
E

n

!
=

[

n2N

\

V 2F(o)

(V \ E
n

) =
[

n2N

\

U

n

2F
n

(o)

U
n

= {o},

which implies that (E, ⌧
ind

) is Hausdor↵ by Corollary 2.2.4 in TVS-I.
As a particular case of Proposition 1.3.1 we get that:

Proposition 1.3.5.

Let (E, ⌧
ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N} and
(F, ⌧) an arbitrary locally convex t.v.s..

1. A linear mapping u from E into F is continuous if and only if, for each
n 2 N, the restriction u � E

n

of u to E
n

is continuous.
2. A linear form on E is continuous if and only if its restrictions to each

E
n

are continuous.

Note that Propositions 1.3.4 and 1.3.5 hold for any countable strict induc-
tive limit of an increasing sequences of locally convex Hausdor↵ t.v.s. (even
when they are not Fréchet).

The following results is instead typical of LF-spaces as it heavily relies on
the completeness of the t.v.s. of the defining sequence.

Theorem 1.3.6. Any LF-space is complete.

Proof.
Let (E, ⌧

ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N}. Let F
be a Cauchy filter on (E, ⌧

ind

). Denote by F
E

(o) the filter of neighbourhoods
of the origin in (E, ⌧

ind

) and consider

G := {A ✓ E : A ◆ M + V for some M 2 F , V 2 F
E

(o)}.

1) G is a filter on E.
Indeed, it is clear from its definition that G does not contain the empty set
and that any subset of E containing a set in G has to belong to G. Moreover,
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1. Special classes of topological vector spaces

for any A
1

, A
2

2 G there exist M
1

,M
2

2 F , V
1

, V
2

2 F
E

(o) s.t. M
1

+ V
1

✓ A
1

and M
2

+ V
2

✓ A
2

; and therefore

A
1

\A
2

◆ (M
1

+ V
1

) \ (M
2

+ V
2

) ◆ (M
1

\M
2

) + (V
1

\ V
2

).

The latter proves that A
1

\A
2

2 G since F and F
E

(o) are both filters and so
M

1

\M
2

2 F and V
1

\ V
2

2 F
E

(o).

2) G ✓ F .
In fact, for any A 2 G there exist M 2 F and V 2 F

E

(o) s.t.

A ◆ M + V � M + {0} = M

which implies that A 2 F since F is a filter.

3) G is a Cauchy filter on E.
Let U 2 F

E

(o). Then there always exists V 2 F
E

(o) balanced such that
V +V �V ✓ U . As F is a Cauchy filter on (E, ⌧

ind

), there exists M 2 F such
that M �M ✓ V . Then

(M + V )� (M + V ) ✓ (M �M) + (V � V ) ✓ V + V � V ✓ U

which proves that G is a Cauchy filter since M + V 2 G.

It is possible to show (and we do it later on) that:

9 p 2 N : 8A 2 G, A \ E
p

6= ; (1.13)

This property ensures that the family

G
p

:= {A \ E
p

: A 2 G}

is a filter on E
p

. Moreover, since G is a Cauchy filter on (E, ⌧
ind

) and since
by Proposition 1.3.4 we have ⌧

ind

� E
p

= ⌧
p

, G
p

is a Cauchy filter on (E
p

, ⌧
p

).
Hence, the completeness of E

p

guarantees that there exists x 2 E
p

s.t. G
p

! x.
This implies that also G ! x and so F

E

(o) ✓ G ✓ F which gives F ! x.

Proof. of (1.13)
Suppose that (1.13) is false, i.e. 8n 2 N, 9A

n

2 G s.t. A
n

\ E
n

= ;. By the
definition of G, this means that

8n 2 N, 9M
n

2 F , V
n

2 F
E

(o), s.t. (M
n

+ V
n

) \ E
n

= ;. (1.14)
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1.3. Inductive topologies and LF-spaces

Since E is a locally convex t.v.s., we may assume that each V
n

is balanced
and convex, and that V

n+1

✓ V
n

for all n 2 N. Consider

W
n

:= conv

 
V
n

[
n�1[

k=1

(V
k

\ E
k

)

!
,

then
(W

n

+M
n

) \ E
n

= ;, 8n 2 N.

Indeed, if there exists h 2 (W
n

+M
n

)\E
n

then h 2 E
n

and h 2 (W
n

+M
n

). We
may then write: h = x+ ty+(1� t)z with x 2 M

n

, y 2 V
n

, z 2 V
1

\E
n�1

and
t 2 [0, 1]. Hence, x+ty = h�(1�t)z 2 E

n

. But we also have x+ty 2 M
n

+V
n

,
since V

n

is balanced and so ty 2 V
n

. Therefore, x+ ty 2 (M
n

+V
n

)\E
n

which
contradicts (1.14).

Now let us define

W := conv

 1[

k=1

(V
k

\ E
k

)

!
.

As W is convex and as W \ E
k

contains V
k

\ E
k

for all k 2 N, W is a
neighbourhood of the origin in (E, ⌧

ind

). Moreover, as (V
n

)
n2N is decreasing,

we have that for all n 2 N

W = conv

 
n�1[

k=1

(V
k

\ E
k

) [
1[

k=n

(V
k

\ E
k

)

!
✓ conv

 
n�1[

k=1

(V
k

\ E
k

) [ V
n

!
= W

n

.

Since F is a Cauchy filter on (E, ⌧
ind

), there exists B 2 F such that B�B ✓ W
and so B�B ✓ W

n

, 8n 2 N. On the other hand we have B\M
n

6= ;, 8n 2 N,
as both B and M

n

belong to F . Hence, for all n 2 N we get

B � (B \M
n

) ✓ B �B ✓ W
n

,

which implies
B ✓ W

n

+ (B \M
n

) ✓ W
n

+M
n

and so

B \ E
n

✓ (W
n

+M
n

) \ E
n

(1.14)

= ;.

Therefore, we have got that B \ E
n

= ; for all n 2 N and so that B = ;,
which is impossible as B 2 F . Hence, (1.13) must hold true.
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1. Special classes of topological vector spaces

Example I: The space of polynomials

Let n 2 N and x := (x
1

, . . . , x
n

). Denote by R[x] the space of polynomials in
the n variables x

1

, . . . , x
n

with real coe�cients. A canonical algebraic basis
for R[x] is given by all the monomials

x

↵ := x↵1
1

· · ·x↵n

n

, 8↵ = (↵
1

, . . . ,↵
n

) 2 Nn

0

.

For any d 2 N
0

, let R
d

[x] be the linear subpace of R[x] spanned by all
monomials x↵ with |↵| :=

P
n

i=1

↵
i

 d, i.e.

R
d

[x] := {f 2 R[x]| deg f  d}.

Since there are exactly
�
n+d

d

�
monomials x↵ with |↵|  d, we have that

dim(R
d

[x]) =
(d+ n)!

d!n!
,

and so that R
d

[x] is a finite dimensional vector space. Hence, by Tychono↵
Theorem (see Corollary 3.1.4 in TVS-I) there is a unique topology ⌧d

e

that
makes R

d

[x] into a Hausdor↵ t.v.s. which is also complete and so Fréchet (as it
topologically isomorphic to Rdim(R

d

[x]) equipped with the euclidean topology).
As R[x] :=

S1
d=0

R
d

[x], we can then endow it with the inductive topol-
ogy ⌧

ind

w.r.t. the family of F-spaces
�
(R

d

[x], ⌧d
e

) : d 2 N
0

 
; thus (R[x], ⌧

ind

)
is a LF-space and the following properties hold (proof as Exercise 1, Sheet 3):
a) ⌧

ind

is the finest locally convex topology on R[x],
b) every linear map f from (R[x], ⌧

ind

) into any t.v.s. is continuous.
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