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neighbourhood of the origin in (E, ⌧
ind

) since U\E
m

is a neighbourhood of the
origin in (E

m

, ⌧
m

) for all m 2 N. We can then conclude that ⌧
n

✓ ⌧
ind

� E
n

,
8n 2 N.

From the previous proposition we can easily deduce that any LF-space is
not only a locally convex t.v.s. but also Hausdor↵. Indeed, if (E, ⌧

ind

) is the
LF-space with defining sequence {(E

n

, ⌧
n

) : n 2 N} and we denote by F(o)
[resp. F

n

(o)] the filter of neighbourhoods of the origin in (E, ⌧
ind

) [resp. in
(E

n

, ⌧
n

)], then:

\

V 2F(o)

V =
\

V 2F(o)

V \
 
[

n2N
E

n

!
=

[

n2N

\

V 2F(o)

(V \ E
n

) =
[

n2N

\

U

n

2F
n

(o)

U
n

= {o},

which implies that (E, ⌧
ind

) is Hausdor↵ by Corollary 2.2.4 in TVS-I.
As a particular case of Proposition 1.3.1 we get that:

Proposition 1.3.5.

Let (E, ⌧
ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N} and
(F, ⌧) an arbitrary locally convex t.v.s..

1. A linear mapping u from E into F is continuous if and only if, for each
n 2 N, the restriction u � E

n

of u to E
n

is continuous.
2. A linear form on E is continuous if and only if its restrictions to each

E
n

are continuous.

Note that Propositions 1.3.4 and 1.3.5 hold for any countable strict induc-
tive limit of an increasing sequences of locally convex Hausdor↵ t.v.s. (even
when they are not Fréchet).

The following result is instead typical of LF-spaces as it heavily relies on
the completeness of the t.v.s. of the defining sequence. Before introducing it,
let us introduce the concept of accumulation point for a filter of a topological
space together with some basic useful properties.

Definition 1.3.6. Let F be a filter of a topological space X. A point x 2 X is
called an accumulation point of a filter F if x belongs to the closure of every
set which belongs to F , i.e. x 2 M, 8M 2 F .

Proposition 1.3.7. If a filter F of a topological space X converges to a point
x, then x is an accumulation point of F .

Proof. Suppose that x were not an accumulation point of F . Then there
would be a set M 2 F such that x /2 M . Hence, X \M is open in X and so
it is a neighbourhood of x. Then X \M 2 F as F ! x by assumption. But
F is a filter and so M \

�
X \M

�
2 F and so M \

�
X \M

�
6= ;, which is a

contradiction.

17



1. Special classes of topological vector spaces

Proposition 1.3.8. If a Cauchy filter F of a t.v.s. X has an accumulation
point x, then F converges to x.

Proof. (Christmas assignment)

Theorem 1.3.9. Any LF-space is complete.

Proof.
Let (E, ⌧

ind

) be an LF-space with defining sequence {(E
n

, ⌧
n

) : n 2 N}. Let F
be a Cauchy filter on (E, ⌧

ind

). Denote by F
E

(o) the filter of neighbourhoods
of the origin in (E, ⌧

ind

) and consider

G := {A ✓ E : A ◆ M + V for some M 2 F , V 2 F
E

(o)}.

1) G is a filter on E.
Indeed, it is clear from its definition that G does not contain the empty set
and that any subset of E containing a set in G has to belong to G. Moreover,
for any A

1

, A
2

2 G there exist M
1

,M
2

2 F , V
1

, V
2

2 F
E

(o) s.t. M
1

+ V
1

✓ A
1

and M
2

+ V
2

✓ A
2

; and therefore

A
1

\A
2

◆ (M
1

+ V
1

) \ (M
2

+ V
2

) ◆ (M
1

\M
2

) + (V
1

\ V
2

).

The latter proves that A
1

\A
2

2 G since F and F
E

(o) are both filters and so
M

1

\M
2

2 F and V
1

\ V
2

2 F
E

(o).

2) G ✓ F .
In fact, for any A 2 G there exist M 2 F and V 2 F

E

(o) s.t.

A ◆ M + V � M + {0} = M

which implies that A 2 F since F is a filter.

3) G is a Cauchy filter on E.
Let U 2 F

E

(o). Then there always exists V 2 F
E

(o) balanced such that
V +V �V ✓ U . As F is a Cauchy filter on (E, ⌧

ind

), there exists M 2 F such
that M �M ✓ V . Then

(M + V )� (M + V ) ✓ (M �M) + (V � V ) ✓ V + V � V ✓ U

which proves that G is a Cauchy filter since M + V 2 G.
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1.3. Inductive topologies and LF-spaces

It is possible to show (and we do it later on) that:

9 p 2 N : 8A 2 G, A \ E
p

6= ; (1.13)

This property ensures that the family

G
p

:= {A \ E
p

: A 2 G}

is a filter on E
p

. Moreover, since G is a Cauchy filter on (E, ⌧
ind

) and since
by Proposition 1.3.4 we have ⌧

ind

� E
p

= ⌧
p

, G
p

is a Cauchy filter on (E
p

, ⌧
p

).
Hence, the completeness of E

p

guarantees that there exists x 2 E
p

s.t. G
p

! x
which implies in turn that x is an accumulation point for G

p

by Proposition
1.3.7. In particular, this gives that for any A 2 G we have x 2 A \ E

p

⌧

p ✓
A \ E

p

⌧

indA
⌧

ind , i.e. x is an accumulation point for the Cauchy filter G. Then,
by Proposition 1.3.8, we get that G ! x, and so F

E

(o) ✓ G ✓ F which gives
F ! x.

Proof. of (1.13)
Suppose that (1.13) is false, i.e. 8n 2 N, 9A

n

2 G s.t. A
n

\ E
n

= ;. By the
definition of G, this means that

8n 2 N, 9M
n

2 F , V
n

2 F
E

(o), s.t. (M
n

+ V
n

) \ E
n

= ;. (1.14)

Since E is a locally convex t.v.s., we may assume that each V
n

is balanced
and convex, and that V

n+1

✓ V
n

for all n 2 N. Consider

W
n

:= conv

 
V
n

[
n�1[

k=1

(V
k

\ E
k

)

!
,

then
(W

n

+M
n

) \ E
n

= ;, 8n 2 N.

Indeed, if there exists h 2 (W
n

+M
n

)\E
n

then h 2 E
n

and h 2 (W
n

+M
n

). We
may then write: h = x+ ty+(1� t)z with x 2 M

n

, y 2 V
n

, z 2 V
1

\E
n�1

and
t 2 [0, 1]. Hence, x+ty = h�(1�t)z 2 E

n

. But we also have x+ty 2 M
n

+V
n

,
since V

n

is balanced and so ty 2 V
n

. Therefore, x+ ty 2 (M
n

+V
n

)\E
n

which
contradicts (1.14).

Now let us define

W := conv

 1[

k=1

(V
k

\ E
k

)

!
.
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1. Special classes of topological vector spaces

As W is convex and as W \ E
k

contains V
k

\ E
k

for all k 2 N, W is a
neighbourhood of the origin in (E, ⌧

ind

). Moreover, as (V
n

)
n2N is decreasing,

we have that for all n 2 N

W = conv

 
n�1[

k=1

(V
k

\ E
k

) [
1[

k=n

(V
k

\ E
k

)

!
✓ conv

 
n�1[

k=1

(V
k

\ E
k

) [ V
n

!
= W

n

.

Since F is a Cauchy filter on (E, ⌧
ind

), there exists B 2 F such that B�B ✓ W
and so B�B ✓ W

n

, 8n 2 N. On the other hand we have B\M
n

6= ;, 8n 2 N,
as both B and M

n

belong to F . Hence, for all n 2 N we get

B � (B \M
n

) ✓ B �B ✓ W
n

,

which implies
B ✓ W

n

+ (B \M
n

) ✓ W
n

+M
n

and so

B \ E
n

✓ (W
n

+M
n

) \ E
n

(1.14)

= ;.

Therefore, we have got that B \ E
n

= ; for all n 2 N and so that B = ;,
which is impossible as B 2 F . Hence, (1.13) must hold true.

Example I: The space of polynomials

Let n 2 N and x := (x
1

, . . . , x
n

). Denote by R[x] the space of polynomials in
the n variables x

1

, . . . , x
n

with real coe�cients. A canonical algebraic basis
for R[x] is given by all the monomials

x

↵ := x↵1
1

· · ·x↵n

n

, 8↵ = (↵
1

, . . . ,↵
n

) 2 Nn

0

.

For any d 2 N
0

, let R
d

[x] be the linear subpace of R[x] spanned by all
monomials x↵ with |↵| :=

P
n

i=1

↵
i

 d, i.e.

R
d

[x] := {f 2 R[x]| deg f  d}.

Since there are exactly
�
n+d

d

�
monomials x↵ with |↵|  d, we have that

dim(R
d

[x]) =
(d+ n)!

d!n!
,

and so that R
d

[x] is a finite dimensional vector space. Hence, by Tychono↵
Theorem (see Corollary 3.1.4 in TVS-I) there is a unique topology ⌧d

e

that
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1.3. Inductive topologies and LF-spaces

makes R
d

[x] into a Hausdor↵ t.v.s. which is also complete and so Fréchet (as it
topologically isomorphic to Rdim(R

d

[x]) equipped with the euclidean topology).
As R[x] :=

S1
d=0

R
d

[x], we can then endow it with the inductive topol-
ogy ⌧

ind

w.r.t. the family of F-spaces
�
(R

d

[x], ⌧d
e

) : d 2 N
0

 
; thus (R[x], ⌧

ind

)
is a LF-space and the following properties hold (proof as Sheet 3, Exercise 1):
a) ⌧

ind

is the finest locally convex topology on R[x],
b) every linear map f from (R[x], ⌧

ind

) into any t.v.s. is continuous.

Example II: The space of test functions

Let ⌦✓Rd be open in the euclidean topology. For any integer 0 s1, we
have defined in Section 1.2 the set Cs(⌦) of all real valued s�times continuously
di↵erentiable functions on ⌦, which is a real vector space w.r.t. pointwise
addition and scalar multiplication. We have equipped this space with the
Cs-topology (i.e. the topology of uniform convergence on compact sets of the
functions and their derivatives up to order s) and showed that this turns Cs(⌦)
into a Fréchet space.

Let K be a compact subset of ⌦, which means that it is bounded and
closed in Rd and that its closure is contained in ⌦. For any integer 0  s  1,
consider the subset Ck

c

(K) of Cs(⌦) consisting of all the functions f 2 Cs(⌦)
whose support lies in K, i.e.

Cs

c

(K) := {f 2 Cs(⌦) : supp(f) ✓ K},

where supp(f) denotes the support of the function f on ⌦, that is the closure
in ⌦ of the subset {x 2 ⌦ : f(x) 6= 0}.

For any integer 0  s  1, Cs

c

(K) is always a closed linear subspace
of Cs(⌦). Indeed, for any f, g 2 Cs

c

(K) and any � 2 R, we clearly have
f + g 2 Cs(⌦) and �f 2 Cs(⌦) but also supp(f + g) ✓ supp(f)[ supp(g) ✓ K
and supp(�f) = supp(f) ✓ K, which gives f + g,�f 2 Cs

c

(K). To show
that Cs

c

(K) is closed in Cs(⌦), it su�ces to prove that it is sequentially closed
as Cs(⌦) is a F-space. Consider a sequence (f

j

)
j2N of functions in Cs

c

(K)
converging to f in the Cs�topology. Then clearly f 2 Cs(⌦) and since all the
f
j

vanish in the open set ⌦ \ K, obviously their limit f must also vanish in
⌦ \ K. Thus, regarded as a subspace of Cs(⌦), Cs

c

(K) is also complete (see
Proposition 2.5.8 in TVS-I) and so it is itself an F-space.

Let us now denote by Cs

c

(⌦) the union of the subspaces Cs

c

(K) as K varies
in all possible ways over the family of compact subsets of ⌦, i.e. Cs

c

(⌦) is linear
subspace of Cs(⌦) consisting of all the functions belonging to Cs(⌦) which have
a compact support (this is what is actually encoded in the subscript c). In
particular, the space C1

c

(⌦) (smooth functions with compact support in ⌦)
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1. Special classes of topological vector spaces

is called space of test functions and plays an essential role in the theory of
distributions.

We will not endow Cs

c

(⌦) with the subspace topology induced by Cs(⌦),
but we will consider a finer one, which will turn Cs

c

(⌦) into an LF-space. Let us
consider a sequence (K

j

)
j2N of compact subsets of ⌦ s.t. K

j

✓ K
j+1

, 8j 2 N
and

S1
j=1

K
j

= ⌦. (Sometimes is even more advantageous to choose the
K

j

’s to be relatively compact i.e. the closures of open subsets of ⌦ such that
K

j

✓ ˚K
j+1

, 8j 2 N and
S1

j=1

K
j

= ⌦.)
Then Cs

c

(⌦) =
S1

j=1

Cs

c

(K
j

), as an arbitrary compact subset K of ⌦ is
contained inK

j

for some su�ciently large j. Because of our way of defining the
F-spaces Cs

c

(K
j

), we have that Cs

c

(K
j

) ✓ Cs

c

(K
j+1

) and Cs

c

(K
j+1

) induces on
the subset Cs

c

(K
j

) the same topology as the one originally given on it, i.e. the
subspace topology induced on Cs

c

(K
j

) by Cs(⌦). Thus we can equip Cs

c

(⌦) with
the inductive topology ⌧

ind

w.r.t. the sequence of F-spaces {Cs

c

(K
j

), j 2 N},
which makes Cs

c

(⌦) an LF-space. It is easy to check that ⌧
ind

does not depend
on the choice of the sequence of compact sets K

j

’s provided they fill ⌦.
Note that (Cs

c

(⌦), ⌧
ind

) is not metrizable (see Sheet 3, Exercise 2).

Proposition 1.3.10. For any integer 0  s  1, consider Cs

c

(⌦) endowed
with the LF-topology ⌧

ind

described above. Then we have the following contin-
uous injections:

C1
c

(⌦) ! Cs

c

(⌦) ! Cs�1

c

(⌦), 8 0 < s < 1.

Proof. Let us just prove the first inclusion i : C1
c

(⌦) ! Cs

c

(⌦) as the others
follows in the same way. As C1

c

(⌦) =
S1

j=1

C1
c

(K
j

) is the inductive limit
of the sequence of F-spaces (C1

c

(K
j

))
j2N, where (K

j

)
j2N is a sequence of

compact subsets of ⌦ such that K
j

✓ K
j+1

, 8j 2 N and
S1

j=1

K
j

= ⌦, by
Proposition 1.3.5 we know that i is continuous if and only if, for any j 2 N,
e
j

:= i � C1
c

(K
j

) is continuous. But from the definition we gave of the
topology on each Cs

c

(K
j

) and C1
c

(K
j

), it is clear that both the inclusions
i
j

: C1
c

(K
j

) ! Cs

c

(K
j

) and s
j

: Cs

c

(K
j

) ! Cs

c

(⌦) are continuous. Hence, for
each j 2 N, e

j

= s
j

� i
j

is indeed continuous.

1.4 Projective topologies and examples of projective limits

Let {(E
↵

, ⌧
↵

) : ↵ 2 A} be a family of locally convex t.v.s. over the field K of
real or complex numbers (A is an arbitrary index set). Let E be a vector space
over the same fieldK and, for each ↵ 2 A, let f

↵

: E ! E
↵

be a linear mapping.
The projective topology ⌧

proj

on E w.r.t. the family {(E
↵

, ⌧
↵

, f
↵

) : ↵ 2 A}
is the coarsest topology on E for which all the mappings f

↵

(↵ 2 A) are
continuous.
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1.4. Projective topologies and examples of projective limits

A basis of neighbourhoods of a point x 2 E is given by:

B
proj

(x) :=

(
\

↵2F

f�1
↵

(U
↵

) : F ✓ A finite, U
↵

nbhood of f
↵

(x) in (E
↵

, ⌧
↵

), 8↵ 2 F

)
.

Since the f
↵

are linear mappings and the (E
↵

, ⌧
↵

) are locally convex t.v.s.,
⌧
proj

on E has a basis of convex, balanced and absorbing neighbourhoods of
the origin satisfying conditions (a) and (b) of Theorem 4.1.14 in TVS-I; hence
(E, ⌧

proj

) is a locally convex t.v.s..

Proposition 1.4.1. Let E be a vector space over K endowed with the projec-
tive topology ⌧

proj

w.r.t. the family {(E
↵

, ⌧
↵

, f
↵

) : ↵ 2 A}, where each (E
↵

, ⌧
↵

)
is a locally convex t.v.s. over K and each f

↵

a linear mapping from E to E
↵

.
Then ⌧

proj

is Hausdor↵ if and only if for each 0 6= x 2 E, there exists an
↵ 2 A and a neighbourhood U

↵

of the origin in (E
↵

, ⌧
↵

) such that f
↵

(x) /2 U
↵

.

Proof. Suppose that (E, ⌧
proj

) is Hausdor↵ and let 0 6= x 2 E. By Propo-
sition 2.2.3 in TVS-I, there exists a neighbourhood U of the origin in E not
containing x. Then, by definition of ⌧

proj

there exists a finite subset F ✓ A
and, for any ↵ 2 F , there exists U

↵

neighbourhood of the origin in (E
↵

, ⌧
↵

)
s.t.

T
↵2F f�1

↵

(U
↵

) ✓ U . Hence, as x /2 U , there exists ↵ 2 F s.t. x /2 f�1

↵

(U
↵

)
i.e. f

↵

(x) /2 U
↵

. Conversely, suppose that there exists an ↵ 2 A and a neigh-
bourhood of the origin in (E

↵

, ⌧
↵

) such that f
↵

(x) /2 U
↵

. Then x /2 f�1

↵

(U
↵

),
which implies by Proposition 2.2.3 in TVS-I that ⌧

proj

is a Hausdor↵ topology,
as f�1

↵

(U
↵

) is a neighbourhood of the origin in (E, ⌧
proj

) not containing x.

Proposition 1.4.2. Let E be a vector space over K endowed with the pro-
jective topology ⌧

proj

w.r.t. the family {(E
↵

, ⌧
↵

, f
↵

) : ↵ 2 A}, where each
(E

↵

, ⌧
↵

) is a locally convex t.v.s. over K and each f
↵

a linear mapping from
E to E

↵

. Let (F, ⌧) be an arbitrary t.v.s. and u a linear mapping from F into
E. The mapping u : F ! E is continuous if and only if, for each ↵ 2 A,
f
↵

� u : F ! E
↵

is continuous.

Proof. (Sheet 3, Exercise 3)

Example I: The product of locally convex t.v.s

Let {(E
↵

, ⌧
↵

) : ↵ 2 A} be a family of locally convex t.v.s. The product topol-
ogy ⌧

prod

on E =
Q

↵2AE
↵

(see Definition 1.1.18 in TVS-I) is the coarsest
topology for which all the canonical projections p

↵

: E ! E
↵

(defined by
p
↵

(x) := x
↵

for any x = (x
�

)
�2A 2 E) are continuous. Hence, ⌧

prod

coincides
with the projective topology on E w.r.t. {(E

↵

, ⌧
↵

, p
↵

) : ↵ 2 A}.
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1. Special classes of topological vector spaces

Let us consider now the case when we have a total order on the index
set A, {(E

↵

, ⌧
↵

) : ↵ 2 A} is a family of locally convex t.v.s. over K and for
any ↵  � we have a continuous linear mapping g

↵�

: E
�

! E
↵

. Let E be
the subspace of

Q
↵2AE

↵

whose elements x = (x
↵

)
↵2A satisfy the relation

x
↵

= g
↵�

(x
�

) whenever a ↵  �. For any ↵ 2 A, let f
↵

be the canonical
projection p

↵

:
Q

↵2AE
↵

! E
↵

restricted to E. The space E endowed with
the projective topology w.r.t. the family {(E

↵

, ⌧
↵

, f
↵

) : ↵ 2 A} is said to be
the projective limit of the family {(E

↵

, ⌧
↵

) : ↵ 2 A} w.r.t. the mappings
{g

↵�

: ↵,� 2 A,↵  �}. If each f
↵

(E) is dense in E
↵

then the projective limit
is said to be reduced.

Remark 1.4.3. There are even more general constructions of projective limits
of a family of locally convex t.v.s. (even when the index set is not ordered)
but in the following we will focus on a particular kind of reduced projective
limits. Namely, given an index set A, and a family {(E

↵

, ⌧
↵

) : ↵ 2 A} of
locally convex t.v.s. over K which is directed by topological embeddings (i.e.
for any ↵,� 2 A there exists � 2 A s.t. E

�

⇢ E
↵

and E
�

⇢ E
�

) and such
that the set E :=

T
↵2AE

↵

is dense in each E
↵

, we will consider the reduced
projective limit (E, ⌧

proj

). Here, ⌧
proj

is the projective topology w.r.t. the
family {(E

↵

, ⌧
↵

, i
↵

) : ↵ 2 A}, where each i
↵

is the embedding of E into E
↵

.

Example II: The space of test functions

Let ⌦✓Rd be open in the euclidean topology. The space of test functions
C1
c

(⌦), i.e. the space of all the functions belonging to C1(⌦) which have a
compact support, can be constructed as reduced projective limit of the kind
introduced in Remark 1.4.3.

Consider the index set

T := {t := (t
1

, t
2

) : t
1

2 N
0

, t
2

2 C1(⌦) with t
2

(x) � 1, 8x 2 ⌦}

and for each t 2 T , let us introduce the following norm on C1
c

(⌦):

k'k
t

:= sup
x2⌦

0

@t
2

(x)
X

|↵|t1

|(D↵')(x)|

1

A .

For each t 2 T , let D
t

(⌦) be the completion of C1
c

(⌦) w.r.t. k · k
t

. Then as
sets

C1
c

(⌦) =
\

t2T
D

t

(⌦).
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1.4. Projective topologies and examples of projective limits

Consider on the space of test functions C1
c

(⌦) the projective topology ⌧
proj

w.r.t. the family {(D
t

(⌦), ⌧
t

, i
t

) : t 2 T}, where (for each t 2 T ) ⌧
t

denotes
the topology induced by the norm k · k

t

and i
t

denotes the natural embedding
of C1

c

(⌦) into D
t

(⌦). Then (C1
c

(⌦), ⌧
proj

) is the reduced projective limit of
the family {(D

t

(⌦), ⌧
t

, i
t

) : t 2 T}.
Using Sobolev embeddings theorems, it can be showed that the space of

test functions C1
c

(⌦) can be actually written as projective limit of a family of
weighted Sobolev spaces which are Hilbert spaces (see Chapter I, Section 3.10
of the book [Y. M. Berezansky, Selfadjoint Operators in Spaces of Functions
of Infinite Many Variables, vol. 63, Trans. Amer. Math. Soc., 1986]).
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