
1.5. Approximation procedures in spaces of functions

Consider on the space of test functions C1
c

(⌦) the projective topology ⌧
proj

w.r.t. the family {(D
t

(⌦), ⌧
t

, i
t

) : t 2 T}, where (for each t 2 T ) ⌧
t

denotes
the topology induced by the norm k · k

t

and i
t

denotes the natural embedding
of C1

c

(⌦) into D
t

(⌦). Then (C1
c

(⌦), ⌧
proj

) is the reduced projective limit of
the family {(D

t

(⌦), ⌧
t

, i
t

) : t 2 T}.
Using Sobolev embeddings theorems, it can be showed that the space of

test functions C1
c

(⌦) can be actually written as projective limit of a family of
weighted Sobolev spaces which are Hilbert spaces (see Chapter I, Section 3.10
of the book [Y. M. Berezansky, Selfadjoint Operators in Spaces of Functions
of Infinite Many Variables, vol. 63, Trans. Amer. Math. Soc., 1986]).

1.5 Approximation procedures in spaces of functions

When are forced to deal with “bad” functions, it is a standard strategy trying
to approximate them with “nice” ones, studying the latter ones and proving
that some of the properties in which we are interested, if valid for the approxi-
mating nice functions, would carry over to their limit. Usually we consider the
smooth functions to be “nice” approximating functions and often (especially
when we aim to compute integrals) it is convenient to look for approximating
functions which also have compact support or certain growth properties at
infinity. This is indeed one reason for which in this section we are going to
focus on approximation by C1

c

functions.
Another reason to the usefulness of approximation techniques is that often

the objects needed are extracted from t.v.s. which are spaces of functions
or duals of spaces of functions. Therefore, it becomes extremely useful to
understand how certain spaces of functions can be embedded in the topological
duals of other spaces of functions. It is then important to know when inclusions
of the kind E0 ✓ F 0 hold (here E0, F 0 are respectively the topological dual of
the t.v.s. E and F ) and what relation between E and F is connected to such
an inclusion. A very much used criterion is the following one:

Proposition 1.5.1.

Given two t.v.s. (E, ⌧
E

) and (F, ⌧
F

). The topological dual E0 of E is a linear
subspace of the topological dual F 0 of F if:

1. F is a linear subspace of E;

2. F is dense in E;

3. ⌧
F

is at least as fine as the one induced by E on F , i.e. ⌧
F

◆ (⌧
E

) �
F

.

Proof.
We want to show that there exists an embedding of the vector space E0 into
F 0. By (1) and (3), any continuous linear form on E restricted to F is a
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1. Special classes of topological vector spaces

continuous linear form on F . Moreover, if any two continuous linear forms on
E define the same form on F , then they coincide on F which is by (2) a dense
subset of E and, hence, they coincide everywhere in E (see TVS-I Sheet 4, Ex
3). In conclusion, we have showed that to every continuous linear form L on
E corresponds one and only one continuous linear form L �

F

on F , i.e. the
map E0 ! F 0, L 7! L �

F

is an embedding of vector spaces.

Proving (1) and (3) is usually easy once we are given E and F with their
respective topological structures (e.g. we know that C1(⌦) ⇢ Ck(⌦) for any
integer 0  k < 1 and that the C1-topology is finer than the Ck-topology
restricted to C1(⌦)). Instead showing (2) can be much harder and for this we
need to use approximation techniques (e.g. we will prove that C1(⌦) is dense
in Ck(⌦) for 0  k < 1 endowed with the Ck-topology).

Remark 1.5.2. Remind that saying that the t.v.s. F is dense in the t.v.s. E
means that every element of E is the limit of a filter on F , not necessarily of
a sequence of elements in F .

We will focus now on approximation of Ck functions by C1 functions with
compact support. First of all, let us give an example of such a function on
Rd, which will be particularly useful in the rest of this section.

Example of a C1
c

-function on Rd

Consider for any x 2 Rd:

⇢(x) :=

(
a exp

⇣
� 1

1�|x|2

⌘
for |x| < 1

0 for |x| � 1
, (1.15)

where

a :=

 Z

{y2Rd

:|y|<1}
exp

✓
� 1

1� |x|2

◆
dx

!�1

.

Note that Z

Rd

⇢(x) dx = 1 (1.16)

and supp(⇢) := {x 2 Rd : |x|  1} which is compact in Rd.
Let us now check that ⇢ is a C1 function on Rd. Note that the function ⇢

is an analytic function about every point in the open ball {x 2 Rd : |x| < 1}
(i.e. its Taylor’s expansion about any such a point has a nonzero radius of
convergence) and ⇢ is obviously smooth in {x 2 Rd : |x| > 1}, so the only
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1.5. Approximation procedures in spaces of functions

question is to check what happens for |x| = 1. As ⇢ is rotation-invariant, it
su�ces to check if the function of one real variable:

(
exp

⇣
� 1

1�t

2

⌘
for |t| < 1

0 for |t| � 1
,

is C1 at the points t = 1 and t = �1. Since

exp

✓
� 1

1� t2

◆
= exp

✓
� 1

2(1� t)

◆
exp

✓
� 1

2(1 + t)

◆
,

we actually need to only check that the function of one variable:
⇢

exp
�
�1

s

�
for s > 0

0 for s  0
,

is C1, which is a well-known fact! Hence, ⇢ 2 C1
c

(Rd).

Let us introduce now some notations which will be useful in the following.
For any " > 0, we define

⇢
"

(x) := "�d⇢
⇣x
"

⌘
, 8x 2 Rd.

From the properties of ⇢ showed above, it easily follows that ⇢
"

2 C1
c

(Rd)
with supp(⇢

"

) := {x 2 Rd : |x|  "} and that:
Z

Rd

⇢
"

(x) dx = 1. (1.17)

Indeed, by simply using the change of variables y = x

"

and (1.16) we get
Z

Rd

⇢
"

(x) dx =

Z

Rd

"�d⇢
⇣x
"

⌘
dx =

Z

Rd

⇢(y) dy = 1.

Given a subset S of Rd and a point x 2 Rd, we denote by d(x, S) the Euclidean
distance from x to S, i.e.

d(x, S) := inf
y2S

|x� y|

and, for any " > 0, we denote by N
"

(S) the neighbourhood of order " of S or
"�neighbourhood of S i.e. the set

N
"

(S) := {x 2 Rd : d(x, S)  "}.
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Lemma 1.5.3. Let f 2 C
c

(Rd) and for any " > 0 let us define the following
function on Rd:

f
"

(x) :=

Z

Rd

⇢
"

(x� y)f(y) dy.

Then the following hold.
a) f

"

2 C1
c

(Rd).
b) The support of f

"

is contained in the neighbourhood of order " of the support
of f , i.e. supp(f

"

) ✓ N
"

(supp(f)).
c) When " ! 0, f

"

! f uniformly in Rd.

Proof.
As all the derivatives w.r.t. to x of ⇢

"

(x� y)f(y) exist and the latter function
is continuous as product of continuous functions, we can apply Leibniz’ rule
and di↵erentiate f

"

w.r.t. x by passing the derivative under the integral sign.
Hence, as ⇢

"

2 C1(Rd), we have f
"

2 C1(Rd). Moreover, the integral express-
ing f

"

is actually performed over the set of points y 2 Rd such that y 2 supp(f)
and that x � y 2 supp(⇢

"

), i.e. |x � y|  ". If x /2 N
"

(supp(f)) then there
would not exist such points and the integral would be just zero, which means
that x /2 supp(f

"

). Indeed, if x /2 N
"

(supp(f)) then we would have for any
y 2 supp(f) that |x � y| � d(x, supp(f)) > ", i.e. x � y /2 supp(⇢

"

), which
gives f

"

(x) = 0 and so (2). The latter also guarantees that f
"

has compact
support and so we can conclude that f

"

2 C1
c

(Rd), i.e. (1) holds.
It remains to show that (3) holds.
As f is a continuous function which is identically zero outside a compact

set, f is uniformly continuous on Rd, i.e. 8 ⌘ > 0, 9 " > 0 s.t. 8x, y 2 Rd

|x� y| < " implies |f(x)� f(y)|  ⌘. (1.18)

Moreover, for any " > 0 and any x 2 Rd, by using (1.17) we easily get that:
Z

Rd

⇢
"

(x� y)dy =

Z

Rd

⇢
"

(�z)dz =

Z

Rd

⇢
"

(z)dz = 1. (1.19)

Therefore, for all x 2 Rd we can write:

f(x)� f
"

(x) =

Z

Rd

⇢
"

(x� y)(f(x)� f(y))dy

which together with (1.19) gives that:

|f(x)�f
"

(x)| 

0

B@ sup
y2Rd

|x�y|<"

|f(x)� f(y)|

1

CA
Z

Rd

⇢
"

(x�y)dy  sup
y2Rd

|x�y|<"

|f(x)�f(y)|.
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1.5. Approximation procedures in spaces of functions

Hence, using the latter together with (1.18), we get that 8 ⌘ > 0, 9 " > 0 s.t.
8x 2 Rd, 8"  "

|f(x)� f
"

(x)|  sup
y2Rd

|x�y|<"

|f(x)� f(y)|  sup
y2Rd

|x�y|<"

|f(x)� f(y)|  ⌘,

i.e. f
"

! f uniformly on Rd when " ! 0.

Corollary 1.5.4. Let f 2 Ck

c

(Rd) with 0  k  1 integer and for any " > 0
let us define f

"

as in Lemma 1.5.3. Then, for any p = (p
1

, . . . , p
d

) 2 Nd

0

such
that |p|  k, Dpf

"

! Dpf uniformly on Rd when " ! 0.

Proof. (Christmas assignment)

Before proving our approximation theorem by C1
c

functions, let us recall
that a sequence of subsets S

j

of Rd converges to a subset S of Rd if:

8" > 0, 9J
"

> 0 s.t. 8j � J
"

, S
j

⇢ N
"

(S) and S ⇢ N
"

(S
j

).

Theorem 1.5.5. Let 0  k  1 be an integer and ⌦ be an open set of Rd.
Any function f 2 Ck(⌦) is the limit of a sequence (f

j

)
j2N of functions in

C1
c

(⌦) such that, for each compact subset K of ⌦, the set K \ supp(f
j

) con-
verges to K \ supp(f).

Proof.
Let (⌦

j

)
j2N0 be a sequence of open subsets whose union is equal to ⌦ and

such that, for each j � 1, ⌦
j�1

is compact and contained in ⌦
j

. Define
d
j

:= d(⌦
j�1

,⌦c

j

), where ⌦c

j

denotes the complement of ⌦
j

, then we have
d
j

> 0 for all j 2 N. We can therefore construct for each j 2 N a function
g
j

2 C(⌦) with the following properties:

g
j

(x) = 1 if d(x,⌦c

j

) � 3

4
d
j

, and g
j

(x) = 0 if d(x,⌦c

j

)  d
j

2
.

Note that supp(g
j

) ✓ ⌦
j

and so g
j

2 C
c

(⌦). Define "
j

:= d

j

4

and consider the
function:

h
j

(x) :=

Z

Rd

⇢
"

j

(x� y)g
j

(y) dy.

If x 2 ⌦
j�1

and x� y 2 supp(⇢
"

j

), i.e. |x� y|  d

j

4

, then we have:

d(y,⌦c

j

) � d(x,⌦c

j

)� |x� y| � d
j

� d
j

4
=

3

4
d
j
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which implies g
j

(y) = 1 and so h
j

(x) =
R
Rd

⇢
"

j

(x�y) dy = 1 in view of (1.19).
Hence, h

j

⌘ 1 on ⌦
j�1

.
Since g

j

2 C
c

(⌦), we can apply Lemma 1.5.3 to the functions h
j

and get
that h

j

2 C1
c

(⌦). Moreover, as h
j

⌘ 1 on ⌦
j�1

, it is clear that h
j

! 1 in
C1(⌦) when j ! 1.

Given any function f 2 Ck(⌦), we have that h
j

f 2 Ck

c

(⌦) as it is product
of a C1 function with a Ck function and supp(h

j

f) ✓ supp(h
j

) \ supp(f) ✓
supp(h

j

) which is compact. Also, since h
j

! 1 in C1(⌦) as j ! 1, we have
that h

j

f ! f in Ck(⌦) as j ! 1.
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