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Hence, using the latter together with (1.18), we get that 8 ⌘ > 0, 9 " > 0 s.t.
8x 2 Rd, 8"  "

|f(x)� f
"

(x)|  sup
y2Rd

|x�y|<"

|f(x)� f(y)|  sup
y2Rd

|x�y|<"

|f(x)� f(y)|  ⌘,

i.e. f
"

! f uniformly on Rd when " ! 0.

Corollary 1.5.4. Let f 2 Ck

c

(Rd) with 0  k  1 integer and for any " > 0
let us define f

"

as in Lemma 1.5.3. Then, for any p = (p
1

, . . . , p
d

) 2 Nd

0

such
that |p|  k, Dpf

"

! Dpf uniformly on Rd when " ! 0.

Proof. (Christmas assignment)

Before proving our approximation theorem by C1
c

functions, let us recall
that a sequence of subsets S

j

of Rd converges to a subset S of Rd if:

8" > 0, 9J
"

> 0 s.t. 8j � J
"

, S
j

⇢ N
"

(S) and S ⇢ N
"

(S
j

).

Theorem 1.5.5. Let 0  k  1 be an integer and ⌦ be an open set of Rd.
Any function f 2 Ck(⌦) is the limit of a sequence (f

j

)
j2N of functions in

C1
c

(⌦) such that, for each compact subset K of ⌦, the set K \ supp(f
j

) con-
verges to K \ supp(f).

Proof.
Let (⌦

j

)
j2N0 be a sequence of open subsets whose union is equal to ⌦ and

such that, for each j � 1, ⌦
j�1

is compact and contained in ⌦
j

. Define
d
j

:= d(⌦
j�1

,⌦c

j

), where ⌦c

j

denotes the complement of ⌦
j

, then we have
d
j

> 0 for all j 2 N. We can therefore construct for each j 2 N a function
g
j

2 C(⌦) with the following properties:

g
j

(x) = 1 if d(x,⌦c

j

) � 3

4
d
j

, and g
j

(x) = 0 if d(x,⌦c

j

)  d
j

2
.

Note that supp(g
j

) ✓ ⌦
j

and so g
j

2 C
c

(⌦). Define "
j

:= d

j

4

and consider the
function:

h
j

(x) :=

Z

Rd

⇢
"

j

(x� y)g
j

(y) dy.

If x 2 ⌦
j�1

and x� y 2 supp(⇢
"

j

), i.e. |x� y|  d

j

4

, then we have:

d(y,⌦c

j

) � d(x,⌦c

j

)� |x� y| � d
j

� d
j

4
=

3

4
d
j
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1. Special classes of topological vector spaces

which implies g
j

(y) = 1 and so h
j

(x) =
R
Rd

⇢
"

j

(x�y) dy = 1 in view of (1.19).
Hence, h

j

⌘ 1 on ⌦
j�1

.
Since g

j

2 C
c

(⌦), we can apply Lemma 1.5.3 to the functions h
j

and get
that h

j

2 C1
c

(⌦). Moreover, as h
j

⌘ 1 on ⌦
j�1

, it is clear that h
j

! 1 in
C1(⌦) when j ! 1.

Given any function f 2 Ck(⌦), we have that h
j

f 2 Ck

c

(⌦) as it is product
of a C1 function with a Ck function and supp(h

j

f) ✓ supp(h
j

) \ supp(f) ✓
supp(h

j

) which is compact. Also, since h
j

! 1 in C1(⌦) as j ! 1, we have
that h

j

f ! f in Ck(⌦) as j ! 1.
Note that if K is an arbitrary compact subset of ⌦, then there exists j 2 N

large enough that K ⇢ ⌦
j�1

and so s.t. h
j

(x) = 1 for all x 2 K, which implies

supp(h
j

f) \K = supp(f) \K. (1.20)

So far we have approximated f 2 Ck(⌦) by functions in Ck

c

(⌦), namely the
functions h

j

f , but we want to approximate f by functions C1
c

(⌦).
Suppose that 0  k < 1. By applying Lemma 1.5.3 and Corollary 1.5.4

to each h
j

f 2 Ck

c

(⌦) we can construct a function f
j

2 C1
c

(⌦) such that
supp(f

j

) ✓ N 1
j

(supp(h
j

f)) and for any p = (p
1

, . . . , p
d

) 2 Nd

0

with |p|  k we

have that

9jp
1

2 N : 8j � jp
1

, sup
x2⌦

|Dp (f
j

(x)� h
j

(x)f(x))|  1

j
.

Hence, we have

9j
1

2 N : 8j � j
1

, sup
|p|k

sup
x2⌦

|Dp (f
j

(x)� h
j

(x)f(x))|  1

j
.

As we also know that h
j

f ! f as j ! 1 in the Ck�topology, it is easy to see
that f

j

! f as j ! 1 in the Ck-topology.
Let K be a compact subset of ⌦, then there exists j̃ 2 N large enough

that K ⇢ ⌦
˜

j�1

. Hence, for any j � j̃ we have that (1.20) holds and also that
supp(f

j

) ✓ N 1
j

(supp(h
j

f)). These properties jointly imply that

K \ supp(f
j

) ✓ N 1
j

(K \ supp(h
j

f)) = N 1
j

(K \ supp(f)), 8j � j̃.

Therefore, for any " > 0 we can take J (1)

"

:= max{j̃, 1
"

} and so for any j � J
(1)

"

we get K \ supp(f
j

) ✓ N
"

(K \ supp(f)).
Also for any " > 0 there exists c > 0 such that

K \ supp(f) ✓ {x 2 K : |f(x)| � c}+ {x 2 ⌦ : |x|  "} . (1.21)
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1.5. Approximation procedures in spaces of functions

If we choose now J
(2)

"

2 N large enough that both K ⇢ ⌦
J

(2)
"

�1

and 1

J

(2)
"

 c

2

,

then (by the uniform convergence of f
j

to f) for any x 2 K and any j � J
(2)

"

we have that |f
j

(x)� f(x)|  1

j

 c

2

and so that

{x 2 K : |f(x)| � c} ✓ K \ supp(f
j

). (1.22)

Indeed, if for any x 2 K such that |f(x)| � c we had f
j

(x) = 0, then we would
get c  |f(x)| = |f

j

(x)� f(x)|  c

2

which is a contradiction.
Then, by (1.21) and (1.22), we have that:

K \ supp(f) ✓ (K \ supp(f
j

)) + {x 2 ⌦ : |x|  "} =: A
j

and it is easy to show that A
j

is actually contained in N
"

(K \ supp(f
j

)). In
fact, if x 2 A

j

then x = z + w for some z 2 K \ supp(f
j

) and w 2 ⌦ s.t.
|w|  "; thus we have

d(x,K\supp(f
j

)) = inf
y2K\supp(f

j

)

|z+w�y|  inf
y2K\supp(f

j

)

|z�y|+|w| = |w|  ".

Hence, for all j � max{J (1)

"

, J
(2)

"

} we have both K \ supp(f
j

) ✓ N
"

(K \
supp(f)) and K \ supp(f) ✓ N

"

(K \ supp(f
j

)).
It is easy to work out the analogous proof in the case when k = 1 (do it

as an additional exercise).

We therefore have the following two corollaries.

Corollary 1.5.6. Let 0  k  1 be an integer and ⌦ be an open set of Rd.
C1
c

(⌦) is sequentially dense in Ck(⌦).

Corollary 1.5.7. Let 0  k  1 be an integer and ⌦ be an open set of Rd.
C1
c

(⌦) is dense in Ck(⌦).

With a quite similar proof scheme to the one used in Theorem 1.5.5 (for
all the details see the first part of [2, Chapter 15]) is possible to show that:

Proposition 1.5.8. Let 0  k  1 be an integer and ⌦ be an open set
of Rd. Every function in Ck

c

(⌦) is the limit in the Ck-topology of a sequence
of polynomials in d�variables.

Hence, by combining this result with Corollary 1.5.6, we get that

Corollary 1.5.9. Let 0  k  1 be an integer and ⌦ be an open set of Rd.
Polynomials with d variables in ⌦ form a sequentially dense linear subspace
of Ck(⌦).
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Chapter 2

Bounded subsets of topological vector spaces

In this chapter we will study the notion of bounded set in any t.v.s. and
analyzing some properties which will be useful in the following and especially
in relation with duality theory. Since compactness plays an important role in
the theory of bounded sets, we will start this chapter by recalling some basic
definitions and properties of compact subsets of a t.v.s..

2.1 Preliminaries on compactness

Let us recall some basic definitions of compact subset of a topological space
(not necessarily a t.v.s.)

Definition 2.1.1. A topological space X is said to be compact if X is Haus-
dor↵ and if every open covering {⌦

i

}
i2I of X contains a finite subcovering,

i.e. for any collection {⌦
i

}
i2I of open subsets of X s.t.

S
i2I ⌦i

= X there
exists a finite subset J ✓ I s.t.

S
j2J ⌦j

= X.

By going to the complements, we obtain the following equivalent definition
of compactness.

Definition 2.1.2. A topological space X is said to be compact if X is Haus-
dor↵ and if every family of closed sets {F

i

}
i2I whose intersection is empty

contains a finite subfamily whose intersection is empty, i.e. for any collection
{F

i

}
i2I of closed subsets of X s.t.

T
i2I Fi

= ; there exists a finite subset
J ✓ I s.t.

T
j2J Fj

= ;.

Definition 2.1.3. A subset K of a topological space X is said to be compact if
K endowed with the topology induced by X is Hausdor↵ and for any collection
{⌦

i

}
i2I of open subsets of X s.t.

S
i2I ⌦i

◆ K there exists a finite subset
J ✓ I s.t.

S
j2J ⌦j

◆ K.

Let us state without proof a few well-known properties of compact spaces.
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2. Bounded subsets of topological vector spaces

Proposition 2.1.4.

1. A closed subset of a compact space is compact.
2. Finite unions of compact sets are compact.
3. Arbitrary intersections of compact subsets of a Hausdor↵ topological

space are compact.
4. Let f be a continuous mapping of a compact space X into a Hausdor↵

topological space Y . Then f(X) is a compact subset of Y .
5. Let f be a one-to-one-continuous mapping of a compact space X onto a

compact space Y . Then f is a homeomorphism.
6. Let ⌧

1

, ⌧
2

be two Hausdor↵ topologies on a set X. If ⌧
1

✓ ⌧
2

and (X, ⌧
2

)
is compact then ⌧

1

⌘ ⌧
2

.

In the following we will almost always be concerned with compact subsets
of a Hausdor↵ t.v.s. E carrying the topology induced by E, and so which
are themselves Hausdor↵ t.v.s.. Therefore, we are now introducing a useful
characterization of compactness in Hausdor↵ topological spaces.

Theorem 2.1.5. Let X be a Hausdor↵ topological space. X is compact if and
only if every filter on X has at least one accumulation point.

Proof.
Suppose thatX is compact. Let F be a filter onX and C := {M : M 2 F}. As
F is a filter, no finite intersection of elements in C can be empty. Therefore, by
compactness, the intersection of all elements in C cannot be empty. Then there
exists at least a point x 2 M for all M 2 F , i.e. x is an accumulation point of
F . Conversely, suppose that every filter on X has at least one accumulation
point. Let � be a family of closed sets whose total intersection is empty. To
show that X is compact, we need to show that there exists a finite subfamily
of � whose intersection is empty. Suppose by contradiction that no finite
subfamily of � has empty intersection. Then the family �0 of all the finite
intersections of subsets belonging to � forms a basis of a filter F on X. By
our initial assumption, F has an accumulation point, say x. Thus, x belongs to
the closure of any subset belonging to F and in particular to any set belonging
to �0 (as the elements in �0 are themselves closed). This means that x belongs
to the intersection of all the sets belonging to �0 , which is the same as the
intersection of all the sets belonging to �. But we had assumed the latter to
be empty and so we have a contradiction.

Corollary 2.1.6. A compact subset K of a Hausdor↵ topological space X is
closed.
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2.1. Preliminaries on compactness

Proof.
Let K be a compact subset of a Hausdor↵ topological space X and let x 2 K.
Denote by F(x) � K the filter generated by all the sets U \K where U 2 F(x)
(i.e. U is a neighbourhood of x in X). By Theorem 2.1.5, F(x) � K has an
accumulation point x

1

2 K. We claim that x
1

⌘ x, which implies K = K and
so K closed. In fact, if x

1

6= x then there would exist U 2 F(x) s.t. X \ U is
a neighbourhood of x

1

and thus x
1

6= U \K, which would contradict the fact
that x

1

is an accumulation point F(x) � K.

Last but not least let us recall the following two definitions.

Definition 2.1.7. A subset A of a topological space X is said to be relatively
compact if the closure A of A is compact in X.

Definition 2.1.8. A subset A of a Hausdor↵ t.v.s. E is said to be precompact
if A is relatively compact when viewed as a subset of the completion Ê of E.
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