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Chapter 1

Special classes of topological vector spaces

In these notes we consider vector spaces over the field K of real or complex
numbers given the usual euclidean topology defined by means of the modulus.

1.1 Metrizable topological vector spaces

Definition 1.1.1. A t.v.s. X is said to be metrizable if there exists a metric
d which defines the topology of X.

We recall that a metric d on a set X is a mapping d : X ×X → R+ with
the following properties:

1. d(x, y) = 0 if and only if x = y (identity of indiscernibles);
2. d(x, y) = d(y, x) for all x, y ∈ X (symmetry);
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangular inequality).

To say that the topology of a t.v.s. X is defined by a metric d means that
for any x ∈ X the sets of all open (or equivalently closed) balls:

Br(x) := {y ∈ X : d(x, y) < r}, ∀r > 0

forms a basis of neighbourhoods of x w.r.t. to the original topology on X.
There exists a completely general characterization of metrizable t.v.s..

Theorem 1.1.2. A t.v.s. X is metrizable if and only if X is Hausdorff and
has a countable basis of neighbourhoods of the origin.

Note that one direction is quite straightforward. Indeed, suppose that X
is a metrizable t.v.s. and that d is a metric defining the topology of X, then
the collection of all B 1

n
(o) with n ∈ N is a countable basis of neighbourhoods

of the origin o in X. Moreover, the intersection of all these balls is just the
singleton {o}, which proves that the t.v.s. X is also Hausdorff (see Corollary
2.2.4 in TVS-I)
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1. Special classes of topological vector spaces

The other direction requires more work and we are not going to prove it
in full generality but only for locally convex (l.c.) t.v.s., since this class of
t.v.s. is anyway the most commonly used in applications. Before doing it, let
us make another general observation:

Proposition 1.1.3. In any metrizable t.v.s. X, there exists a translation
invariant metric which defines the topology of X.

Recall that a metric d on X is said to be translation invariant if

d(x+ z, y + z) = d(x, y), ∀x, y, z ∈ X.

It is important to highlight that the converse of Proposition 1.1.3 does
not hold in general. Indeed, the topology τd defined on a vector space X by
a translation invariant metric d is a translation invariant topology and also
the addition is always continuous w.r.t. τd. However, the multiplication by
scalars might be not continuous w.r.t. τd and so (X, τd) is not necessarily a
t.v.s.. For example, the discrete metric on any non-trivial vector space X is
translation invariant but the discrete topology on X is not compatible with
the multiplication by scalars (see Proposition 2.1.4 in TVS-I) .

Proof. (of Theorem 1.1.2 and Proposition 1.1.3 for l.c. t.v.s.)
Let X be a l.c. t.v.s.. Suppose that X is Hausdorff and has a countable basis
{Un, n ∈ N} of neighbourhoods of the origin. Since X is a l.c. t.v.s., we can
assume that such a countable basis of neighbourhoods of the origin consists
of barrels, i.e. closed, convex, absorbing and balanced sets (see Proposition
4.1.13 in TVS-I) and that satisfies the following property (see Theorem 4.1.14
in TVS-I):

∀j ∈ N, ∀ρ > 0, ∃n ∈ N : Un ⊂ ρUj .

We may then take

Vn = U1 ∩ · · · ∩ Un, ∀n ∈ N

as a basis of neighbourhoods of the origin in X. Each Vn is a still barrel,
Vn+1 ⊆ Vn for any n ∈ N and:

∀j ∈ N,∀ρ > 0, ∃n ∈ N : Vn ⊂ ρVj . (1.1)

Moreover, we know that for any n ∈ N there is a seminorm pn on X whose
closed unit semiball is Vn, i.e. Vn = {x ∈ X : pn(x) ≤ 1}. Then clearly we
have that this is a countable family of seminorms generating the topology of
X and such that pn ≤ pn+1 for all n ∈ N.
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1.1. Metrizable topological vector spaces

Let us now fix a sequence of real positive numbers {aj}j∈N such that∑∞
j=1 aj <∞ and define the mapping d on X ×X as follows:

d(x, y) :=
∞∑
j=1

aj
pj(x− y)

1 + pj(x− y)
, ∀, x, y ∈ X.

We want to show that this is a metric which defines the topology of X.

Let us immediately observe that the positive homogeneity of the seminorms
pj gives that d is a symmetric function. Also, since X is a Hausdorff t.v.s.,
we get that {o} ⊆ ∩∞n=1Ker(pn) ⊆ ∩∞n=1Vn = {o}, i.e. ∩∞n=1Ker(pn) = {o}.
This provides that d(x, y) = 0 if and only if x = y . We must therefore check
the triangular inequality for d. This will follow by applying, for any fixed
j ∈ N and x, y, z ∈ X, Lemma 1.1.4 below to a := pj(x − y), b := pj(y − z)
and c := pj(x − z). In fact, since each pj is a seminorm on X, we have
that the above defined a, b, c are all non-negative real numbers such that:
c = pj(x− z) = pj(x− y + y − z) ≤ pj(x− y) + pj(y − z) = a+ b. Hence, the
assumption of Lemma 1.1.4 are fulfilled for such a choice of a, b and c and we
get that for each j ∈ N:

pj(x− z)
1 + pj(x− z)

≤ pj(x− y)

1 + pj(x− y)
+

pj(y − z)
1 + pj(y − z)

, ∀x, y, z ∈ X.

Since the aj ’s are all positive, this implies that d(x, z) ≤ d(x, y) + d(y, z),
∀x, y, z ∈ X. We have then proved that d is indeed a metric and from its
definition it is clear that it is also translation invariant.

To complete the proof, we need to show that the topology defined by
this metric d coincides with the topology initially given on X. By Hausdorff
criterion (see Theorem 1.1.17 in TVS-I), we therefore need to prove that for
any x ∈ X both the following hold:

1. ∀r > 0,∃n ∈ N : x+ Vn ⊆ Br(x)

2. ∀n ∈ N,∃r > 0 : Br(x) ⊆ x+ Vn

Because of the translation invariance of both topologies, we can consider just
the case x = o.

Let us fix r > 0. As
∑∞

j=1 aj <∞, we can find j(r) ∈ N such that

∞∑
j=j(r)+1

aj <
r

2
. (1.2)
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1. Special classes of topological vector spaces

Using that pn ≤ pn+1 for all n ∈ N and denoting by A the sum of the series
of the aj ’s, we get:

j(r)∑
j=1

aj
pj(x)

1 + pj(x)
≤ pj(r)(x)

j(r)∑
j=1

aj ≤ pj(r)(x)

∞∑
j=1

aj = Apj(r)(x). (1.3)

Combining (1.2) and (1.3), we get that if x ∈ r
2AVj(r), i.e. if pj(r)(x) ≤ r

2A ,
then:

d(x, o) =

j(r)∑
j=1

aj
pj(x)

1 + pj(x)
+

∞∑
j=j(r)+1

aj
pj(x)

1 + pj(x)
< Apj(r)(x) +

r

2
≤ r.

This proves that r
2AVj(r) ⊆ Br(o). By (1.1), there always exists n ∈ N s.t.

Vn ⊆ r
2AVj(r) and so 1 holds.

In order to prove 2, let us fix j ∈ N. Then clearly

aj
pj(x)

1 + pj(x)
≤ d(x, o), ∀x ∈ X.

As the aj ’s are all positive, the latter implies that:

pj(x) ≤ a−1
j (1 + pj(x))d(x, o), ∀x ∈ X.

Therefore, if x ∈ Baj
2

(o) then d(x, o) ≤ aj
2 and so pj(x) ≤ (1+pj(x))

2 , which

gives pj(x) ≤ 1. Hence, Baj
2

(o) ⊆ Vj which proves 2.

Let us show now the small lemma used in the proof above:

Lemma 1.1.4. Let a, b, c ∈ R+ such that c ≤ a+ b then c
1+c ≤

a
1+a + b

1+b .

Proof. W.l.o.g. we can assume c > 0 and a + b > 0. (Indeed, if c = 0 or
a + b = 0 then there is nothing to prove.)Then c ≤ a + b is equivalent to

1
a+b ≤

1
c . This implies that

(
1 + 1

c

)−1 ≤
(

1 + 1
a+b

)−1
which is equivalent to:

c

1 + c
≤ a+ b

1 + a+ b
=

a

1 + a+ b
+

b

1 + a+ b
≤ a

1 + a
+

b

1 + b
.

We have therefore the following characterization of l.c. metrizable t.v.s.:

Proposition 1.1.5. A locally convex t.v.s. (X, τ) is metrizable if and only if
τ can be generated by a countable separating family of seminorms.
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1.1. Metrizable topological vector spaces

Let us introduce now three general properties of all metrizable t.v.s. (not
necessarily l.c.), which are well-known in the theory of metric spaces.

Proposition 1.1.6. A metrizable t.v.s. X is complete if and only if X is
sequentially complete.

Proof. (Sheet 1, Exercise 2-a))

(For the definitions of completeness and sequentially completeness of a
t.v.s., see Definition 2.5.5 and Definition 2.5.6 in TVS-I. See also Proposition
2.5.7 and Example 2.5.9 n TVS-I for more details on the relation between
these two notions for general t.v.s..)

Proposition 1.1.7. Let X be a metrizable t.v.s. and Y be any t.v.s. (not
necessarily metrizable). A mapping f : X → Y (not necessarily linear) is
continuous if and only if it is sequentially continuous.

Proof. (Sheet 1, Exercise 2-b))

Recall that a mapping f from a topological space X into a topological
space Y is said to be sequentially continuous if for every sequence {xn}n∈N
convergent to a point x ∈ X the sequence {f(xn)}n∈N converges to f(x) in Y .

The proof that continuity of f : X → Y always implies its sequentially
continuity is pretty straightforward and holds under the general assumption
that X and Y are topological spaces (see Proposition 1.1.38 in TVS-I). The
converse does not hold in general as the following example shows.

Example 1.1.8.
Let us consider the set C([0, 1]) of all real-valued continuous functions on [0, 1].
This is a vector space w.r.t. the pointwise addition and multiplication by real
scalars. We endow C([0, 1]) with two topologies which both make it into a
t.v.s.. The first topology σ is the one give by the metric:

d(f, g) :=

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

, ∀f, g ∈ C([0, 1]).

The second topology τ is instead the topology generated by the family (px)x∈[0,1]

of seminorms on C([0, 1]), where

px(f) := |f(x)|, ∀f ∈ C([0, 1]).

We will show that the identity map I : (C([0, 1]), τ)→ (C([0, 1]), σ) is sequen-
tially continuous but not continuous.
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1. Special classes of topological vector spaces

• I is sequentially continuous
Let (fn)n∈N be a sequence of elements in C([0, 1]) which is τ−convergent to
f ∈ C([0, 1]) as n→∞, i.e. |fn(x)− f(x)| → 0, ∀x ∈ [0, 1] as n→∞. Set

gn(x) :=
|fn(x)− f(x)|

1 + |fn(x)− f(x)|
, ∀x ∈ [0, 1], ∀n ∈ N.

Then |gn(x)| ≤ 1, ∀x ∈ [0, 1], ∀n ∈ N and gn(x) → 0 ∀x ∈ [0, 1] as n → ∞.
Hence, by the Lebesgue dominated convergence theorem, we get

∫ 1
0 gn(x)dx→

0 as n→∞, that is, d(fn, f)→ 0 as n→∞, i.e. the sequence (I(fn))n∈N is
σ−convergent to f as n→∞.
• I is not continuous
Suppose that I is continuous at o ∈ C([0, 1]) and fix ε ∈ (0, 1). Then there
exists a neighbourhood N of the origin in (C([0, 1]), τ) s.t. N ⊂ I−1(Bd

ε (o)),
where Bd

ε (o) := {f ∈ C([0, 1]) : d(f, 0) ≤ ε}. This means that there exist
n ∈ N, x1, . . . , xn ∈ [0, 1] and δ > 0 s.t.

n⋂
i=1

δUpxi ⊂ B
d
ε (o), (1.4)

where Upxi := {f ∈ C([0, 1]) : |f(xi)| ≤ 1}.
Take now fk(x) := k(x − x1) · · · (x − xn), ∀k ∈ N, ∀x ∈ [0, 1]. Then fk ∈
C([0, 1]) for all k ∈ N and fk(xi) = 0 < δ for all i = 1, . . . , n. Hence,

fk ∈
n⋂
i=1

{f ∈ C([0, 1]) : |f(xi)| ≤ δ} =

n⋂
i=1

δUpxi
(1.4)
⊂ Bd

ε (o), ∀k ∈ N (1.5)

Set

hk(x) :=
|fk(x)|

1 + |fk(x)|
, ∀x ∈ [0, 1], ∀k ∈ N.

Then |hk(x)| ≤ 1, ∀x ∈ [0, 1], ∀k ∈ N and hk(x)→ 1 ∀x ∈ [0, 1] \ {x1, . . . , xn}
as k → ∞. Hence, by the Lebesgue dominated convergence theorem, we get∫ 1

0 hk(x)dx →
∫ 1

0 1dx = 1 as k → ∞, that is, d(fk, f) → 1 as k → ∞. This
together with (1.5) gives tha ε ≥ 1 which contradicts our assumption ε ∈ (0, 1).

By Proposition 1.1.7, we then conclude that (C([0, 1]), τ) is not metrizable.

Proposition 1.1.9. A complete metrizable t.v.s. X is a Baire space, i.e. X
fulfills any of the following properties:
(B) the union of any countable family of closed sets, none of which has interior
points, has no interior points.
(B’) the intersection of any countable family of everywhere dense open sets is
an everywhere dense set.
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1.1. Metrizable topological vector spaces

Note that the equivalence of (B) and (B’) is easily given by taking the
complements. Indeed, the complement of a closed set C without interior
points is clearly open and we get: X \ (X \ C) = C̊ = ∅ which is equivalent
to X \ C = X, i.e. X \ C is everywhere dense.

Example 1.1.10. An example of Baire space is R with the euclidean topology.
Instead Q with the subset topology given by the euclidean topology on R is not
a Baire space. Indeed, for any q ∈ Q the subset {q} is closed and has empty
interior in Q, but ∪q∈Q{q} = Q which has interior points in Q (actually its
interior is the whole Q).

Before proving Proposition 1.1.9, let us observe that the converse of the
proposition does not hold because there exist Baire spaces which are not
metrizable. Moreover, the assumptions of Proposition 1.1.9 cannot be weak-
ened, because there exist complete non-metrizable t.v.s and metrizable non-
complete t.v.s which are not Baire spaces.

Proof. of Proposition 1.1.9
We are going to prove that Property (B’) holds in any complete metrizable
t.v.s.. Let {Ωk}k∈N be a sequence of dense open subsets of X and let us denote
by A their intersection. We need to show that A intersects every open subset
of X (this means indeed that A is dense, since every neighbourhood of every
point in X contains some open set and hence some point of A).

Let O be an arbitrary open subset of X. Since X is a metrizable t.v.s.,
there exists a countable basis {Uk}k∈N of neighbourhoods of the origin which
we may take all closed and s.t. Uk+1 ⊆ Uk for all k ∈ N. As Ω1 is open and
dense we have that O ∩ Ω1 is open and non-empty. Therefore, there exists
x1 ∈ O ∩Ω1 and k1 ∈ N s.t. x1 +Uk1 ⊆ O ∩Ω1. Let us call G1 the interior of
x1 + Uk1 .

As Ω2 is dense and G1 is a non-empty open set, we have that G1 ∩ Ω2

is open and non-empty. Hence, there exists x2 ∈ G1 ∩ Ω2 and k2 ∈ N s.t.
x2 +Uk2 ⊆ G1∩Ω2. Let us choose k2 > k1 and call G2 the interior of x2 +Uk2 .
Proceeding in this way, we get a sequence of open sets G := {Gl}l∈N with the
following properties for any l ∈ N:

1. Gl ⊆ Ωl ∩O
2. Gl+1 ⊆ Gl
3. Gl ⊆ xl + Ukl .

Note that the family G does not contain the empty set and Property 2 implies
that for any Gj , Gk ∈ G the intersection Gj ∩ Gk = Gmax{j,k} ∈ G. Hence, G

7



1. Special classes of topological vector spaces

is a basis of a filter F in X1. Moreover, Property 3 implies that

∀l ∈ N, Gl −Gl ⊆ Ukl − Ukl (1.6)

which guarantees that F is a Cauchy filter in X. Indeed, for any neighbour-
hood U of the origin in X there exists a balanced neighbourhood of the origin
such that V − V ⊆ U and so there exists k ∈ N such that Uk ⊆ V . Hence,
there exists l ∈ N s.t. kl ≥ l and so Ukl ⊆ Uk. Then by (1.6) we have that
Gl − Gl ⊆ Ukl − Ukl ⊆ V − V ⊆ U . Since Gl ∈ G and so in F , we have got
that F is a Cauchy filter.

As X is complete, the Cauchy filter F has a limit point x ∈ X, i.e. the filter
of neighbourhoods of x is contained in the filter F . This implies that x ∈ Gl
for all l ∈ N (If there would exists l ∈ N s.t. x /∈ Gl then there would exists a
neighbourhood N of x s.t. N ∩ Gl = ∅. As Gl ∈ F and any neighbourhood
of x belongs to F , we get ∅ ∈ F which contradicts the definition of filter.)
Hence:

x ∈
⋂
l∈N

Gl ⊆ O ∩
⋂
l∈N

Ωl = O ∩A.

1.2 Fréchet spaces

Definition 1.2.1. A complete metrizable locally convex t.v.s. is called a
Fréchet space (or F-space)

Note that by Theorem 1.1.2 and Proposition 1.1.9, any Fréchet space is in
particular a Hausdorff Baire space. Combining the properties of metrizable
t.v.s. which we proved in Sheet 1 and the results about complete t.v.s. which
we have seen in TVS-I, we easily get the following properties:

• Any closed linear subspace of an F-space endowed with the induced
subspace topology is an F-space.

• The product of a countable family of F-spaces endowed with the product
topology is an F-space.

• The quotient of an F-space modulo a closed subspace endowed with the
quotient topology is an F-space.

Examples of F-spaces are: Hausdorff finite dimensional t.v.s., Hilbert spaces,
and Banach spaces. In the following we will present two examples of F-spaces
which do not belong to any of these categories.

1Recall that a basis of a filter on X is a family G of non-empty subsets of X s.t. ∀G1, G2 ∈
G,∃G3 ∈ G s.t. G3 ⊂ G1 ∩G2.
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1.2. Fréchet spaces

Let us first recall some standard notations. For any x = (x1, . . . , xd) ∈ Rd
and α = (α1, . . . , αd) ∈ Nd0 one defines xα := xα1

1 · · ·x
αd
d . For any β ∈ Nd0, the

symbol Dβ denotes the partial derivative of order |β| where |β| :=
∑d

i=1 βi,
i.e.

Dβ :=
∂|β|

∂xβ11 · · · ∂x
βd
d

=
∂β1

∂xβ11

· · · ∂
βd

∂xβdd
.

Example: Cs(Ω) with Ω ⊆ Rd open.
Let Ω ⊆ Rd open in the euclidean topology. For any s ∈ N0, we denote by
Cs(Ω) the set of all real valued s−times continuously differentiable functions
on Ω, i.e. all the derivatives of order ≤ s exist (at every point of Ω) and are
continuous functions in Ω. Clearly, when s = 0 we get the set C(Ω) of all
real valued continuous functions on Ω and when s = ∞ we get the so-called
set of all infinitely differentiable functions or smooth functions on Ω. For any
s ∈ N0, Cs(Ω) (with pointwise addition and scalar multiplication) is a vector
space over R.

Let us consider the following family P of seminorms on Cs(Ω):

pm,K(f) := sup
β∈Nd0
|β|≤m

sup
x∈K

∣∣∣(Dβf)(x)
∣∣∣ , ∀K ⊂ Ω compact,∀m ∈ {0, 1, . . . , s},

(Note when s = ∞ we have m ∈ N0.) The topology τP generated by P is
usually referred as Cs-topology or topology of uniform convergence on compact
sets of the functions and their derivatives up to order s.

1) The Cs-topology clearly turns Cs(Ω) into a locally convex t.v.s., which is
evidently Hausdorff as the family P is separating (see Prop 4.3.3 in TVS-I).
Indeed, if pm,K(f) = 0, ∀m ∈ {0, 1, . . . , s} and ∀K compact subset of Ω then
in particular p0,{x}(f) = |f(x)| = 0 ∀x ∈ Ω, which implies f ≡ 0 on Ω.

2) (Cs(Ω), τP) is metrizable.

By Proposition 1.1.5, this is equivalent to prove that the Cs-topology can be
generated by a countable separating family of seminorms. In order to show
this, let us first observe that for any two non-negative integers m1 ≤ m2 ≤ s
and any two compact K1 ⊆ K2 ⊂ Ω we have:

pm1,K1(f) ≤ pm2,K2(f), ∀f ∈ Cs(Ω).

Then the family {ps,K : K ⊂ Ω compact} generates the Cs−topology on Cs(Ω).
Moreover, it is easy to show that there is a sequence of compact subsets
{Kj}j∈N of Ω such that Kj ⊆ K̊j+1 for all j ∈ N and Ω = ∪j∈NKj . Then

9



1. Special classes of topological vector spaces

for any K ⊂ Ω compact we have that there exists j ∈ N s.t. K ⊆ Kj and
so ps,K(f) ≤ ps,Kj (f), ∀f ∈ Cs(Ω). Hence, the countable family of seminorms
{ps,Kj : j ∈ N} generates the Cs−topology on Cs(Ω) and it is separating. In-
deed, if ps,Kj (f) = 0 for all j ∈ N then for every x ∈ Ω we have x ∈ Ki for
some i ∈ N and so 0 ≤ |f(x)| ≤ ps,Ki(f) = 0, which implies |f(x)| = 0 for all
x ∈ Ω, i.e. f ≡ 0 on Ω.

3) (Cs(Ω), τP) is complete.
By Proposition 1.1.6, it is enough to show that it is sequentially complete.
Let (fν)ν∈N be a Cauchy sequence in Ck(Ω), i.e.

∀m ≤ s, ∀K ⊂ Ω compact,∀ε > 0,∃N ∈ N s.t. ∀µ, ν ≥ N : pm,K(fν−fµ) ≤ ε.
(1.7)

In particular, for any x ∈ Ω by taking m = 0 and K = {x} we get that the
sequence (fν(x))ν∈N is a Cauchy sequence in R. Hence, by the completeness
of R, it has a limit point in R which we denote by f(x). Obviously x 7→ f(x) is
a function on Ω, so we have just showed that the sequence (fν)ν∈N converges
to f pointwise in Ω, i.e.

∀x ∈ Ω, ∀ε > 0,∃Mx ∈ N s.t. ∀µ ≥Mx : |fµ(x)− f(x)| ≤ ε. (1.8)

Then it is easy to see that (fν)ν∈N converges uniformly to f in every compact
subset K of Ω. Indeed, we get it just passing to the pointwise limit for µ→∞
in (1.7) for m = 0. 2

As (fν)ν∈N converges uniformly to f in every compact subset K of Ω, by
taking this subset identical with a suitable neighbourhood of any point of Ω,
we conclude by Lemma 1.2.2 that f is continuous in Ω.

• If s = 0, this completes the proof since we just showed fν → f in the
C0−topology and f ∈ C(Ω).

• If 0 < s < ∞, then observe that since (fν)ν∈N is a Cauchy sequence
in Cs(Ω), for each j ∈ {1, . . . , d} the sequence ( ∂

∂xj
fν)ν∈N is a Cauchy

sequence in Cs−1(Ω). Then induction on s allows us to conclude that,
for each j ∈ {1, . . . , d}, the ( ∂

∂xj
fν)ν∈N converges uniformly on every

compact subset of Ω to a function g(j) ∈ Cs−1(Ω) and by Lemma 1.2.3
we have that g(j) = ∂

∂xj
f . Hence, we have showed that (fν)ν∈N converges

to f in the Cs−topology with f ∈ Cs(Ω).

2Detailed proof: Let ε > 0. By (1.7) for m = 0, ∃N ∈ N s.t.∀µ, ν ≥ N : |fν(x)−fµ(x)| ≤
ε
2
,∀x ∈ K. Now for each fixed x ∈ K one can always choose a µx larger than both N and

the corresponding Mx as in (1.8) so that |fµx(x)− f(x)| ≤ ε
2
. Hence, for all ν ≥ N one gets

that |fν(x)− f(x)| ≤ |fν(x)− fµx(x)|+ |fµx(x)− f(x)| ≤ ε, ∀x ∈ K

10



1.2. Fréchet spaces

• If s =∞, then we are also done by the definition of the C∞-topology. In-
deed, a Cauchy sequence (fν)ν∈N in C∞(Ω) it is in particular a Cauchy
sequence in the subspace topology given by Cs(Ω) for any s ∈ N and
hence, for what we have already showed, it converges to f ∈ Cs(Ω) in
the Cs−topology for any s ∈ N. This means exactly that (fν)ν∈N con-
verges to f ∈ C∞(Ω) in the in C∞−topology.

Let us prove now the two lemmas which we have used in the previous proof:

Lemma 1.2.2. Let A ⊂ Rd and (fν)ν∈N in C(A). If (fν)ν∈N converges to a
function f uniformly in A then f ∈ C(A).

Proof.
Let x0 ∈ A and ε > 0. By the uniform convergence of (fν)ν∈N to f in A we
get that:

∃N ∈ N s.t. ∀ν ≥ N : |fν(y)− f(y)| ≤ ε

3
,∀y ∈ A.

Fix such a ν. As fν is continuous on A then:

∃δ > 0 s.t. ∀x ∈ A with |x− x0| ≤ δ we have |fν(x)− fν(x0)| ≤ ε

3
.

Therefore, we obtain that ∀x ∈ A with |x− x0| ≤ δ :

|f(x)− f(x0)| ≤ |f(x)− fν(x)|+ |fν(x)− fν(x0)|+ |fν(x0)− f(x0)| ≤ ε.

Lemma 1.2.3. Let A ⊂ Rd and (fν)ν∈N in C1(A). If (fν)ν∈N converges to a
function f uniformly in A and for each j ∈ {1, . . . , d} the sequence ( ∂

∂xj
fν)ν∈N

converges to a function g(j) uniformly in A, then

g(j) =
∂

∂xj
f, ∀j ∈ {1, . . . , d}.

This means in particular that f ∈ C1(A).

Proof. (for d = 1, A = [a, b])
By the fundamental theorem of calculus, we have that for any x ∈ A

fν(x)− fν(a) =

∫ x

a

∂

∂t
fν(t)dt. (1.9)

11



1. Special classes of topological vector spaces

By the uniform convergence of the first derivatives to g(1) and by the Lebesgue
dominated convergence theorem, we also have∫ x

a

∂

∂t
fν(t)dt→

∫ x

a
g(1)(t)dt, as ν →∞. (1.10)

Using (1.9) and (1.10) together with the assumption that fν → f unformly in
A, we obtain that:

f(x)− f(a) =

∫ x

a
g(1)(t)dt,

i.e.
(
∂
∂xf

)
(x) = g(1)(x),∀x ∈ A.

Example: The Schwarz space S(Rd).
The Schwartz space or space of rapidly decreasing functions on Rd is defined
as the set S(Rd) of all real-valued functions which are defined and infinitely
differentiable on Rd and which have the additional property (regulating their
growth at infinity) that all their derivatives tend to zero at infinity faster than
any inverse power of x, i.e.

S(Rd) :=

{
f ∈ C∞(Rd) : sup

x∈Rd

∣∣∣xα(Dβf)(x)
∣∣∣ <∞, ∀α, β ∈ Nd0

}
.

(For example, any smooth function f with compact support in Rd is in S(Rd),
since any derivative of f is continuous and supported on a compact subset of
Rd, so xα(Dβf(x)) has a maximum in Rd by the extreme value theorem.)

The Schwartz space S(Rd) is a vector space over R and we equip it with
the topology τQ given by the family Q of seminorms on S(Rd):

qm,k(f) := sup
β∈Nd0
|β|≤m

sup
x∈Rd

(1 + |x|)k
∣∣∣(Dβ)f(x)

∣∣∣ , ∀m, k ∈ N0.

Note that f ∈ S(Rd) if and only if ∀m, k ∈ N0, qm,k(f) <∞.
The space S(Rd) is a linear subspace of C∞(Rd), but τQ is finer than the
subspace topology induced on it by τP where P is the family of seminorms
defined on C∞(Rd) as in the above example. Indeed, it is clear that for any
f ∈ S(Rd), any m ∈ N0 and any K ⊂ Rd compact we have pm,K(f) ≤ qm,0(f)
which gives the desired inclusion of topologies.
1) (S(Rd), τQ) is a locally convex t.v.s. which is also evidently Hausdorff since
the family Q is separating. Indeed, if qm,k(f) = 0, ∀m, k ∈ N0 then in
particular q0,0(f) = supx∈Rd |f(x)| = 0, which implies f ≡ 0 on Rd.
2) (S(Rd), τQ) is a metrizable, as Q is countable and separating (see Propo-
sition 1.1.5).

12



1.2. Fréchet spaces

3) (S(Rd), τQ) is a complete. By Proposition 1.1.6, it is enough to show that

it is sequentially complete. Let (fν)ν∈N be a Cauchy sequence S(Rd) then a
fortiori we get that (fν)ν∈N is a Cauchy sequence in C∞(Rd) endowed with the
C∞−topology. Since such a space is complete, then there exists f ∈ C∞(Rd)
s.t. (fν)ν∈N converges to f in the the C∞−topology. From this we also know
that:

∀β ∈ Nd0,∀x ∈ Rd, (Dβfν)(x)→ (Dβf)(x) as ν →∞ (1.11)

We are going to prove at once that (fν)ν∈N is converging to f in the τQ
topology (not only in the C∞−topology) and that f ∈ S(Rd).

Let m, k ∈ N0 and let ε > 0. As (fν)ν∈N is a Cauchy sequence in S(Rd),
there exists a constant M s.t. ∀ν, µ ≥ M we have: qm,k(fν − fµ) ≤ ε. Then
fixing β ∈ Nd0 with |β| ≤ m and x ∈ Rd we get

(1 + |x|)k
∣∣∣(Dβfν)(x)− (Dβfµ)(x)

∣∣∣ ≤ ε.
Passing to the limit for µ→∞ in the latter relation and using (1.11), we get

(1 + |x|)k
∣∣∣(Dβfν)(x)− (Dβf)(x)

∣∣∣ ≤ ε.
Hence, for all ν ≥ M we have that qm,k(fν − f) ≤ ε as desired. Then by the
triangular inequality it easily follows that

∀m, k ∈ N0, qm,k(f) <∞, i.e. f ∈ S(Rd).

13



1. Special classes of topological vector spaces

1.3 Inductive topologies and LF-spaces

Let {(Eα, τα) : α ∈ A} be a family of locally convex Hausdorff t.v.s. over the
field K of real or complex numbers (A is an arbitrary index set). Let E be
a vector space over the same field K and, for each α ∈ A, let gα : Eα → E
be a linear mapping. The inductive topology τind on E w.r.t. the family
{(Eα, τα, gα) : α ∈ A} is the topology generated by the following basis of
neighbourhoods of the origin in E:

Bind : = {U ⊂ E convex, balanced, absorbing : ∀α ∈ A, g−1
α (U) is

a neighbourhood of the origin in (Eα, τα)}.

Then it easily follows that the space (E, τind) is a l.c. t.v.s. (c.f. Theorem 4.1.14
in TVS-I). Note that τind is the finest locally convex topology on E for which
all the mappings gα (α ∈ A) are continuous. Suppose there exists a locally
convex topology τ on E s.t. all the gα’s are continuous and τind ⊆ τ . As (E, τ)
is locally convex, there always exists a basis of neighbourhood of the origin
consisting of convex, balanced, absorbing subsets of E. Then for any such a
neighbourhood U of the origin in (E, τ) we have, by continuity, that g−1

α (U)
is a neighbourhood of the origin in (Eα, τα). Hence, U ∈ Bind and so τ ≡ τind.

It is also worth to underline that (E, τind) is not necessarily a Hausdorff
t.v.s., although all the spaces (Eα, τα) are Hausdorff t.v.s..

Proposition 1.3.1. Let {(Eα, τα) : α ∈ A} be a family of locally convex
Hausdorff t.v.s. over the field K and, for any α ∈ A, let gα : Eα → E be a
linear mapping. Let E be a vector space over K endowed with the inductive
topology τind w.r.t. the family {(Eα, τα, gα) : α ∈ A}, (F, τ) an arbitrary locally
convex t.v.s., and u a linear mapping from E into F . The mapping u : E → F
is continuous if and only if u ◦ gα : Eα → F is continuous for all α ∈ A.

Proof. Suppose u is continuous and fix α ∈ A. Since gα is also continuous, we
have that u ◦ gα is continuous as composition of continuous mappings. 3

Conversely, suppose that for each α ∈ A the mapping u ◦ gα is continuous.
As (F, τ) is locally convex, there always exists a basis of neighbourhoods of

3Alternatively: Let W be a neighbourhood of the origin in (F, τ).

Suppose u is continuous, then we have that u−1(W ) is a neighbourhood of the origin in
(E, τind). Therefore, there exists U ∈ Bind s.t. U ⊆ u−1(W ) and so

g−1
α (U) ⊆ g−1

α (u−1(W )) = (u ◦ gα)−1(W ), ∀α ∈ A. (1.12)

As by definition of Bind, each g−1
α (U) is a neighbourhood of the origin in (Eα, τα), so is

(u ◦ gα)−1(W ) by (1.12). Hence, all u ◦ gα are continuous.

14



1.3. Inductive topologies and LF-spaces

the origin consisting of convex, balanced, absorbing subsets of F . Let W be
such a neighbourhood. Then, by the linearity of u, we get that u−1(W ) is a
convex, balanced and absorbing subset of E. Moreover, the continuity of all
u ◦ gα guarantees that each (u ◦ gα)−1(W ) is a neighbourhood of the origin in
(Eα, τα), i.e. g−1

α (u−1(W )) is a neighbourhood of the origin in (Eα, τα). Then
u−1(W ), being also convex, balanced and absorbing, must be in Bind and so
it is a neighbourhood of the origin in (E, τind). Hence, u is continuous.

Let us consider now the case when we have a total order on the index
set A and {Eα : α ∈ A} is a family of linear subspaces of a vector space E
over K which is directed under inclusions, i.e. Eα ⊆ Eβ whenever α ≤ β,
and s.t. E = ∪α∈AEα. For each α ∈ A, let iα be the canonical embedding of
Eα in E and τα a topology on Eα s.t. (Eα, τα) is a locally convex Hausdorff
t.v.s. and, whenever α ≤ β, the topology induced by τβ on Eα is coarser
than τα. The space E equipped with the inductive topology τind w.r.t. the
family {(Eα, τα, iα) : α ∈ A} is said to be the inductive limit of the family
of linear subspaces {(Eα, τα) : α ∈ A}.

An inductive limit of a family of linear subspaces {(Eα, τα) : α ∈ A} is
said to be a strict inductive limit if, whenever α ≤ β, the topology induced
by τβ on Eα coincide with τα.

There are even more general constructions of inductive limits of a family
of locally convex t.v.s. but in the following we will focus on a more concrete
family of inductive limits which are more common in applications. Namely,
we are going to consider the so-called LF-spaces, i.e. countable strict induc-
tive limits of increasing sequences of Fréchet spaces. For convenience, let us
explicitly write down the definition of an LF-space.

Definition 1.3.2. Let {En : n ∈ N} be an increasing sequence of linear
subspaces of a vector space E over K, i.e. En ⊆ En+1 for all n ∈ N, such that
E = ∪n∈NEn. For each n ∈ N let (En, τn) be a Fréchet space such that the
natural embedding in of En into En+1 is a topological isomorphism, i.e. the
topology induced by τn+1 on En coincides with τn. The space E equipped with
the inductive topology τind w.r.t. the family {(En, τn, in) : n ∈ N} is said to be
the LF-space with defining sequence {(En, τn) : n ∈ N}.

A basis of neighbourhoods of the origin in the LF-space (E, τind) with
defining sequence {(En, τn) : n ∈ N} is given by:

{U ⊂ E convex, balanced, abs. : ∀n ∈ N, U∩En is a nbhood of o in (En, τn)}.
Note that from the construction of the LF-space (E, τind) with defining

sequence {(En, τn) : n ∈ N} we know that each En is isomorphically embedded

15



1. Special classes of topological vector spaces

in the subsequent ones, but a priori we do not know if En is isomorphically
embedded in E, i.e. if the topology induced by τind on En is identical to
the topology τn initially given on En. This is indeed true and it will be a
consequence of the following lemma.

Lemma 1.3.3. Let X be a locally convex t.v.s., X0 a linear subspace of X
equipped with the subspace topology, and U a convex neighbourhood of the
origin in X0. Then there exists a convex neighbourhood V of the origin in X
such that V ∩X0 = U .

Proof.
As X0 carries the subspace topology induced by X, there exists a neighbour-
hood W of the origin in X such that U = W ∩X0. Since X is a locally convex
t.v.s., there exists a convex neighbourhood W0 of the origin in X such that
W0 ⊆W . Let V be the convex hull of U ∪W0. Then by construction we have
that V is a convex neighbourhood of the origin in X and that U ⊆ V which
implies U = U ∩X0 ⊆ V ∩X0. We claim that actually V ∩X0 = U . Indeed,
let x ∈ V ∩ X0; as x ∈ V and as U and W0 are both convex, we may write
x = ty + (1 − t)z with y ∈ U, z ∈ W0 and t ∈ [0, 1]. If t = 1, then x = y ∈ U
and we are done. If 0 ≤ t < 1, then z = (1− t)−1(x− ty) belongs to X0 and
so z ∈ W0 ∩ X0 ⊆ W ∩ X0 = U . This implies, by the convexity of U , that
x ∈ U . Hence, V ∩X0 ⊆ U .

Proposition 1.3.4.
Let (E, τind) be an LF-space with defining sequence {(En, τn) : n ∈ N}. Then

τind � En ≡ τn, ∀n ∈ N.

Proof.
(⊆) Let U be a neighbourhood of the origin in (E, τind). Then, by definition

of τind, there exists V convex, balanced and absorbing neighbourhood of the
origin in (E, τind) s.t. V ⊆ U and, for each n ∈ N, V ∩En is a neighbourhood
of the origin in (En, τn). Hence, τind � En ⊆ τn, ∀n ∈ N.

(⊇) Given n ∈ N, let Un be a convex, balanced, absorbing neighbourhood
of the origin in (En, τn). Since En is a linear subspace of En+1, we can apply
Lemma 1.3.3 (for X = En+1, X0 = En and U = Un) which ensures the
existence of a convex neighbourhood Un+1 of the origin in (En+1, τn+1) such
that Un+1 ∩ En = Un. Then, by induction, we get that for any k ∈ N there
exists a convex neighbourhood Un+k of the origin in (En+k, τn+k) such that
Un+k ∩ En+k−1 = Un+k−1. Hence, for any k ∈ N, we get Un+k ∩ En = Un. If
we consider now U :=

⋃∞
k=1 Un+k, then U ∩ En = Un. Furthermore, U is a
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neighbourhood of the origin in (E, τind) since U∩Em is a neighbourhood of the
origin in (Em, τm) for all m ∈ N. We can then conclude that τn ⊆ τind � En,
∀n ∈ N.

From the previous proposition we can easily deduce that any LF-space is
not only a locally convex t.v.s. but also Hausdorff. Indeed, if (E, τind) is the
LF-space with defining sequence {(En, τn) : n ∈ N} and we denote by F(o)
[resp. Fn(o)] the filter of neighbourhoods of the origin in (E, τind) [resp. in
(En, τn)], then:⋂
V ∈F(o)

V =
⋂

V ∈F(o)

V ∩

(⋃
n∈N

En

)
=
⋃
n∈N

⋂
V ∈F(o)

(V ∩ En) =
⋃
n∈N

⋂
Un∈Fn(o)

Un = {o},

which implies that (E, τind) is Hausdorff by Corollary 2.2.4 in TVS-I.
As a particular case of Proposition 1.3.1 we get that:

Proposition 1.3.5.
Let (E, τind) be an LF-space with defining sequence {(En, τn) : n ∈ N} and
(F, τ) an arbitrary locally convex t.v.s..

1. A linear mapping u from E into F is continuous if and only if, for each
n ∈ N, the restriction u � En of u to En is continuous.

2. A linear form on E is continuous if and only if its restrictions to each
En are continuous.

Note that Propositions 1.3.4 and 1.3.5 hold for any countable strict induc-
tive limit of an increasing sequences of locally convex Hausdorff t.v.s. (even
when they are not Fréchet).

The following result is instead typical of LF-spaces as it heavily relies on
the completeness of the t.v.s. of the defining sequence. Before introducing it,
let us introduce the concept of accumulation point for a filter of a topological
space together with some basic useful properties.

Definition 1.3.6. Let F be a filter of a topological space X. A point x ∈ X is
called an accumulation point of a filter F if x belongs to the closure of every
set which belongs to F , i.e. x ∈M, ∀M ∈ F .

Proposition 1.3.7. If a filter F of a topological space X converges to a point
x, then x is an accumulation point of F .

Proof. Suppose that x were not an accumulation point of F . Then there
would be a set M ∈ F such that x /∈ M . Hence, X \M is open in X and so
it is a neighbourhood of x. Then X \M ∈ F as F → x by assumption. But
F is a filter and so M ∩

(
X \M

)
∈ F and so M ∩

(
X \M

)
6= ∅, which is a

contradiction.
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Proposition 1.3.8. If a Cauchy filter F of a t.v.s. X has an accumulation
point x, then F converges to x.

Proof. (Christmas assignment, Exercise 6-a)

Theorem 1.3.9. Any LF-space is complete.

Proof.
Let (E, τind) be an LF-space with defining sequence {(En, τn) : n ∈ N}. Let F
be a Cauchy filter on (E, τind). Denote by FE(o) the filter of neighbourhoods
of the origin in (E, τind) and consider

G := {A ⊆ E : A ⊇M + V for some M ∈ F , V ∈ FE(o)}.

1) G is a filter on E.
Indeed, it is clear from its definition that G does not contain the empty set
and that any subset of E containing a set in G has to belong to G. Moreover,
for any A1, A2 ∈ G there exist M1,M2 ∈ F , V1, V2 ∈ FE(o) s.t. M1 + V1 ⊆ A1

and M2 + V2 ⊆ A2; and therefore

A1 ∩A2 ⊇ (M1 + V1) ∩ (M2 + V2) ⊇ (M1 ∩M2) + (V1 ∩ V2).

The latter proves that A1 ∩A2 ∈ G since F and FE(o) are both filters and so
M1 ∩M2 ∈ F and V1 ∩ V2 ∈ FE(o).

2) G ⊆ F .
In fact, for any A ∈ G there exist M ∈ F and V ∈ FE(o) s.t.

A ⊇M + V ⊃M + {0} = M

which implies that A ∈ F since F is a filter.

3) G is a Cauchy filter on E.
Let U ∈ FE(o). Then there always exists V ∈ FE(o) balanced such that
V +V −V ⊆ U . As F is a Cauchy filter on (E, τind), there exists M ∈ F such
that M −M ⊆ V . Then

(M + V )− (M + V ) ⊆ (M −M) + (V − V ) ⊆ V + V − V ⊆ U

which proves that G is a Cauchy filter since M + V ∈ G.
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1.3. Inductive topologies and LF-spaces

It is possible to show (and we do it later on) that:

∃ p ∈ N : ∀A ∈ G, A ∩ Ep 6= ∅ (1.13)

This property ensures that the family

Gp := {A ∩ Ep : A ∈ G}

is a filter on Ep. Moreover, since G is a Cauchy filter on (E, τind) and since
by Proposition 1.3.4 we have τind � Ep = τp, Gp is a Cauchy filter on (Ep, τp).
Hence, the completeness of Ep guarantees that there exists x ∈ Ep s.t. Gp → x
which implies in turn that x is an accumulation point for Gp by Proposition
1.3.7. In particular, this gives that for any A ∈ G we have x ∈ A ∩ Ep

τp ⊆
A ∩ Ep

τindA
τind , i.e. x is an accumulation point for the Cauchy filter G. Then,

by Proposition 1.3.8, we get that G → x, and so FE(o) ⊆ G ⊆ F which gives
F → x.

Proof. of (1.13)
Suppose that (1.13) is false, i.e. ∀n ∈ N, ∃An ∈ G s.t. An ∩ En = ∅. By the
definition of G, this means that

∀n ∈ N, ∃Mn ∈ F , Vn ∈ FE(o), s.t. (Mn + Vn) ∩ En = ∅. (1.14)

Since E is a locally convex t.v.s., we may assume that each Vn is balanced
and convex, and that Vn+1 ⊆ Vn for all n ∈ N. Consider

Wn := conv

(
Vn ∪

n−1⋃
k=1

(Vk ∩ Ek)

)
,

then

(Wn +Mn) ∩ En = ∅, ∀n ∈ N.

Indeed, if there exists h ∈ (Wn+Mn)∩En then h ∈ En and h ∈ (Wn+Mn). We
may then write: h = x+ ty+ (1− t)z with x ∈Mn, y ∈ Vn, z ∈ V1∩En−1 and
t ∈ [0, 1]. Hence, x+ty = h−(1−t)z ∈ En. But we also have x+ty ∈Mn+Vn,
since Vn is balanced and so ty ∈ Vn. Therefore, x+ ty ∈ (Mn+Vn)∩En which
contradicts (1.14).

Now let us define

W := conv

( ∞⋃
k=1

(Vk ∩ Ek)

)
.
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As W is convex and as W ∩ Ek contains Vk ∩ Ek for all k ∈ N, W is a
neighbourhood of the origin in (E, τind). Moreover, as (Vn)n∈N is decreasing,
we have that for all n ∈ N

W = conv

(
n−1⋃
k=1

(Vk ∩ Ek) ∪
∞⋃
k=n

(Vk ∩ Ek)

)
⊆ conv

(
n−1⋃
k=1

(Vk ∩ Ek) ∪ Vn

)
= Wn.

Since F is a Cauchy filter on (E, τind), there exists B ∈ F such that B−B ⊆W
and so B−B ⊆Wn,∀n ∈ N. On the other hand we have B∩Mn 6= ∅,∀n ∈ N,
as both B and Mn belong to F . Hence, for all n ∈ N we get

B − (B ∩Mn) ⊆ B −B ⊆Wn,

which implies

B ⊆Wn + (B ∩Mn) ⊆Wn +Mn

and so

B ∩ En ⊆ (Wn +Mn) ∩ En
(1.14)

= ∅.

Therefore, we have got that B ∩ En = ∅ for all n ∈ N and so that B = ∅,
which is impossible as B ∈ F . Hence, (1.13) must hold true.

Example I: The space of polynomials
Let n ∈ N and x := (x1, . . . , xn). Denote by R[x] the space of polynomials in
the n variables x1, . . . , xn with real coefficients. A canonical algebraic basis
for R[x] is given by all the monomials

xα := xα1
1 · · ·x

αn
n , ∀α = (α1, . . . , αn) ∈ Nn0 .

For any d ∈ N0, let Rd[x] be the linear subpace of R[x] spanned by all
monomials xα with |α| :=

∑n
i=1 αi ≤ d, i.e.

Rd[x] := {f ∈ R[x]|deg f ≤ d}.

Since there are exactly
(
n+d
d

)
monomials xα with |α| ≤ d, we have that

dim(Rd[x]) =
(d+ n)!

d!n!
,

and so that Rd[x] is a finite dimensional vector space. Hence, by Tychonoff
Theorem (see Corollary 3.1.4 in TVS-I) there is a unique topology τde that
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makes Rd[x] into a Hausdorff t.v.s. which is also complete and so Fréchet (as it
topologically isomorphic to Rdim(Rd[x]) equipped with the euclidean topology).

As R[x] :=
⋃∞
d=0 Rd[x], we can then endow it with the inductive topol-

ogy τind w.r.t. the family of F-spaces
{

(Rd[x], τde ) : d ∈ N0

}
; thus (R[x], τind)

is a LF-space and the following properties hold (proof as Sheet 3, Exercise 1):

a) τind is the finest locally convex topology on R[x],

b) every linear map f from (R[x], τind) into any t.v.s. is continuous.

Example II: The space of test functions
Let Ω⊆Rd be open in the euclidean topology. For any integer 0≤ s≤∞, we
have defined in Section 1.2 the set Cs(Ω) of all real valued s−times continuously
differentiable functions on Ω, which is a real vector space w.r.t. pointwise
addition and scalar multiplication. We have equipped this space with the
Cs-topology (i.e. the topology of uniform convergence on compact sets of the
functions and their derivatives up to order s) and showed that this turns Cs(Ω)
into a Fréchet space.

Let K be a compact subset of Ω, which means that it is bounded and
closed in Rd and that its closure is contained in Ω. For any integer 0 ≤ s ≤ ∞,
consider the subset Ckc (K) of Cs(Ω) consisting of all the functions f ∈ Cs(Ω)
whose support lies in K, i.e.

Csc (K) := {f ∈ Cs(Ω) : supp(f) ⊆ K},

where supp(f) denotes the support of the function f on Ω, that is the closure
in Ω of the subset {x ∈ Ω : f(x) 6= 0}.

For any integer 0 ≤ s ≤ ∞, Csc (K) is always a closed linear subspace
of Cs(Ω). Indeed, for any f, g ∈ Csc (K) and any λ ∈ R, we clearly have
f + g ∈ Cs(Ω) and λf ∈ Cs(Ω) but also supp(f + g) ⊆ supp(f)∪ supp(g) ⊆ K
and supp(λf) = supp(f) ⊆ K, which gives f + g, λf ∈ Csc (K). To show
that Csc (K) is closed in Cs(Ω), it suffices to prove that it is sequentially closed
as Cs(Ω) is a F-space. Consider a sequence (fj)j∈N of functions in Csc (K)
converging to f in the Cs−topology. Then clearly f ∈ Cs(Ω) and since all the
fj vanish in the open set Ω \ K, obviously their limit f must also vanish in
Ω \ K. Thus, regarded as a subspace of Cs(Ω), Csc (K) is also complete (see
Proposition 2.5.8 in TVS-I) and so it is itself an F-space.

Let us now denote by Csc (Ω) the union of the subspaces Csc (K) as K varies
in all possible ways over the family of compact subsets of Ω, i.e. Csc (Ω) is linear
subspace of Cs(Ω) consisting of all the functions belonging to Cs(Ω) which have
a compact support (this is what is actually encoded in the subscript c). In
particular, the space C∞c (Ω) (smooth functions with compact support in Ω)
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is called space of test functions and plays an essential role in the theory of
distributions.

We will not endow Csc (Ω) with the subspace topology induced by Cs(Ω),
but we will consider a finer one, which will turn Csc (Ω) into an LF-space. Let us
consider a sequence (Kj)j∈N of compact subsets of Ω s.t. Kj ⊆ Kj+1, ∀j ∈ N
and

⋃∞
j=1Kj = Ω. (Sometimes is even more advantageous to choose the

Kj ’s to be relatively compact i.e. the closures of open subsets of Ω such that
Kj ⊆ ˚Kj+1, ∀j ∈ N and

⋃∞
j=1Kj = Ω.)

Then Csc (Ω) =
⋃∞
j=1 Csc (Kj), as an arbitrary compact subset K of Ω is

contained in Kj for some sufficiently large j. Because of our way of defining the
F-spaces Csc (Kj), we have that Csc (Kj) ⊆ Csc (Kj+1) and Csc (Kj+1) induces on
the subset Csc (Kj) the same topology as the one originally given on it, i.e. the
subspace topology induced on Csc (Kj) by Cs(Ω). Thus we can equip Csc (Ω) with
the inductive topology τind w.r.t. the sequence of F-spaces {Csc (Kj), j ∈ N},
which makes Csc (Ω) an LF-space. It is easy to check that τind does not depend
on the choice of the sequence of compact sets Kj ’s provided they fill Ω.

Note that (Csc (Ω), τind) is not metrizable (see Sheet 3, Exercise 2).

Proposition 1.3.10. For any integer 0 ≤ s ≤ ∞, consider Csc (Ω) endowed
with the LF-topology τind described above. Then we have the following contin-
uous injections:

C∞c (Ω)→ Csc (Ω)→ Cs−1
c (Ω), ∀ 0 < s <∞.

Proof. Let us just prove the first inclusion i : C∞c (Ω) → Csc (Ω) as the others
follows in the same way. As C∞c (Ω) =

⋃∞
j=1 C∞c (Kj) is the inductive limit

of the sequence of F-spaces (C∞c (Kj))j∈N, where (Kj)j∈N is a sequence of

compact subsets of Ω such that Kj ⊆ Kj+1, ∀j ∈ N and
⋃∞
j=1Kj = Ω, by

Proposition 1.3.5 we know that i is continuous if and only if, for any j ∈ N,
ej := i � C∞c (Kj) is continuous. But from the definition we gave of the
topology on each Csc (Kj) and C∞c (Kj), it is clear that both the inclusions
ij : C∞c (Kj) → Csc (Kj) and sj : Csc (Kj) → Csc (Ω) are continuous. Hence, for
each j ∈ N, ej = sj ◦ ij is indeed continuous.

1.4 Projective topologies and examples of projective limits

Let {(Eα, τα) : α ∈ A} be a family of locally convex t.v.s. over the field K of
real or complex numbers (A is an arbitrary index set). Let E be a vector space
over the same field K and, for each α ∈ A, let fα : E → Eα be a linear mapping.
The projective topology τproj on E w.r.t. the family {(Eα, τα, fα) : α ∈ A}
is the coarsest topology on E for which all the mappings fα (α ∈ A) are
continuous.
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A basis of neighbourhoods of a point x ∈ E is given by:

Bproj(x) :=

{⋂
α∈F

f−1α (Uα) : F ⊆ Afinite, Uα nbhood of fα(x) in (Eα, τα), ∀α ∈ F

}
.

Since the fα are linear mappings and the (Eα, τα) are locally convex t.v.s.,
τproj on E has a basis of convex, balanced and absorbing neighbourhoods of
the origin satisfying conditions (a) and (b) of Theorem 4.1.14 in TVS-I; hence
(E, τproj) is a locally convex t.v.s..

Proposition 1.4.1. Let E be a vector space over K endowed with the projec-
tive topology τproj w.r.t. the family {(Eα, τα, fα) : α ∈ A}, where each (Eα, τα)
is a locally convex t.v.s. over K and each fα a linear mapping from E to Eα.
Then τproj is Hausdorff if and only if for each 0 6= x ∈ E, there exists an
α ∈ A and a neighbourhood Uα of the origin in (Eα, τα) such that fα(x) /∈ Uα.

Proof. Suppose that (E, τproj) is Hausdorff and let 0 6= x ∈ E. By Propo-
sition 2.2.3 in TVS-I, there exists a neighbourhood U of the origin in E not
containing x. Then, by definition of τproj there exists a finite subset F ⊆ A
and, for any α ∈ F , there exists Uα neighbourhood of the origin in (Eα, τα)
s.t.

⋂
α∈F f

−1
α (Uα) ⊆ U . Hence, as x /∈ U , there exists α ∈ F s.t. x /∈ f−1

α (Uα)
i.e. fα(x) /∈ Uα. Conversely, suppose that there exists an α ∈ A and a neigh-
bourhood of the origin in (Eα, τα) such that fα(x) /∈ Uα. Then x /∈ f−1

α (Uα),
which implies by Proposition 2.2.3 in TVS-I that τproj is a Hausdorff topology,
as f−1

α (Uα) is a neighbourhood of the origin in (E, τproj) not containing x.

Proposition 1.4.2. Let E be a vector space over K endowed with the pro-
jective topology τproj w.r.t. the family {(Eα, τα, fα) : α ∈ A}, where each
(Eα, τα) is a locally convex t.v.s. over K and each fα a linear mapping from
E to Eα. Let (F, τ) be an arbitrary t.v.s. and u a linear mapping from F into
E. The mapping u : F → E is continuous if and only if, for each α ∈ A,
fα ◦ u : F → Eα is continuous.

Proof. (Sheet 3, Exercise 3)

Example I: The product of locally convex t.v.s
Let {(Eα, τα) : α ∈ A} be a family of locally convex t.v.s. The product topol-
ogy τprod on E =

∏
α∈AEα (see Definition 1.1.18 in TVS-I) is the coarsest

topology for which all the canonical projections pα : E → Eα (defined by
pα(x) := xα for any x = (xβ)β∈A ∈ E) are continuous. Hence, τprod coincides
with the projective topology on E w.r.t. {(Eα, τα, pα) : α ∈ A}.
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1. Special classes of topological vector spaces

Let us consider now the case when we have a total order on the index
set A, {(Eα, τα) : α ∈ A} is a family of locally convex t.v.s. over K and for
any α ≤ β we have a continuous linear mapping gαβ : Eβ → Eα. Let E be
the subspace of

∏
α∈AEα whose elements x = (xα)α∈A satisfy the relation

xα = gαβ(xβ) whenever a α ≤ β. For any α ∈ A, let fα be the canonical
projection pα :

∏
α∈AEα → Eα restricted to E. The space E endowed with

the projective topology w.r.t. the family {(Eα, τα, fα) : α ∈ A} is said to be
the projective limit of the family {(Eα, τα) : α ∈ A} w.r.t. the mappings
{gαβ : α, β ∈ A,α ≤ β}. If each fα(E) is dense in Eα then the projective limit
is said to be reduced.

Remark 1.4.3. There are even more general constructions of projective limits
of a family of locally convex t.v.s. (even when the index set is not ordered)
but in the following we will focus on a particular kind of reduced projective
limits. Namely, given an index set A, and a family {(Eα, τα) : α ∈ A} of
locally convex t.v.s. over K which is directed by topological embeddings (i.e.
for any α, β ∈ A there exists γ ∈ A s.t. Eγ ⊂ Eα and Eγ ⊂ Eβ) and such
that the set E :=

⋂
α∈AEα is dense in each Eα, we will consider the reduced

projective limit (E, τproj). Here, τproj is the projective topology w.r.t. the
family {(Eα, τα, iα) : α ∈ A}, where each iα is the embedding of E into Eα.

Example II: The space of test functions
Let Ω⊆Rd be open in the euclidean topology. The space of test functions
C∞c (Ω), i.e. the space of all the functions belonging to C∞(Ω) which have a
compact support, can be constructed as reduced projective limit of the kind
introduced in Remark 1.4.3.

Consider the index set

T := {t := (t1, t2) : t1 ∈ N0, t2 ∈ C∞(Ω) with t2(x) ≥ 1, ∀x ∈ Ω}

and for each t ∈ T , let us introduce the following norm on C∞c (Ω):

‖ϕ‖t := sup
x∈Ω

t2(x)
∑
|α|≤t1

|(Dαϕ)(x)|

 .

For each t ∈ T , let Dt(Ω) be the completion of C∞c (Ω) w.r.t. ‖ · ‖t. Then as
sets

C∞c (Ω) =
⋂
t∈T

Dt(Ω).
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Consider on the space of test functions C∞c (Ω) the projective topology τproj
w.r.t. the family {(Dt(Ω), τt, it) : t ∈ T}, where (for each t ∈ T ) τt denotes
the topology induced by the norm ‖ · ‖t and it denotes the natural embedding
of C∞c (Ω) into Dt(Ω). Then (C∞c (Ω), τproj) is the reduced projective limit of
the family {(Dt(Ω), τt, it) : t ∈ T}.

Using Sobolev embeddings theorems, it can be showed that the space of
test functions C∞c (Ω) can be actually written as projective limit of a fam-
ily of weighted Sobolev spaces which are Hilbert spaces (see [1, Chapter I,
Section 3.10]).

1.5 Approximation procedures in spaces of functions

When are forced to deal with “bad” functions, it is a standard strategy trying
to approximate them with “nice” ones, studying the latter ones and proving
that some of the properties in which we are interested, if valid for the approxi-
mating nice functions, would carry over to their limit. Usually we consider the
smooth functions to be “nice” approximating functions and often (especially
when we aim to compute integrals) it is convenient to look for approximating
functions which also have compact support or certain growth properties at
infinity. This is indeed one reason for which in this section we are going to
focus on approximation by C∞c functions.

Another reason to the usefulness of approximation techniques is that often
the objects needed are extracted from t.v.s. which are spaces of functions
or duals of spaces of functions. Therefore, it becomes extremely useful to
understand how certain spaces of functions can be embedded in the topological
duals of other spaces of functions. It is then important to know when inclusions
of the kind E′ ⊆ F ′ hold (here E′, F ′ are respectively the topological dual of
the t.v.s. E and F ) and what relation between E and F is connected to such
an inclusion. A very much used criterion is the following one:

Proposition 1.5.1.
Given two t.v.s. (E, τE) and (F, τF ). The topological dual E′ of E is a linear
subspace of the topological dual F ′ of F if:

1. F is a linear subspace of E;

2. F is dense in E;

3. τF is at least as fine as the one induced by E on F , i.e. τF ⊇ (τE) �F .

Proof.
We want to show that there exists an embedding of the vector space E′ into
F ′. By (1) and (3), any continuous linear form on E restricted to F is a
continuous linear form on F . Moreover, if any two continuous linear forms on
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E define the same form on F , then they coincide on F which is by (2) a dense
subset of E and, hence, they coincide everywhere in E (see TVS-I Sheet 4, Ex
3). In conclusion, we have showed that to every continuous linear form L on
E corresponds one and only one continuous linear form L �F on F , i.e. the
map E′ → F ′, L 7→ L �F is an embedding of vector spaces.

Proving (1) and (3) is usually easy once we are given E and F with their
respective topological structures (e.g. we know that C∞(Ω) ⊂ Ck(Ω) for any
integer 0 ≤ k < ∞ and that the C∞-topology is finer than the Ck-topology
restricted to C∞(Ω)). Instead showing (2) can be much harder and for this we
need to use approximation techniques (e.g. we will prove that C∞(Ω) is dense
in Ck(Ω) for 0 ≤ k <∞ endowed with the Ck-topology).

Remark 1.5.2. Remind that saying that the t.v.s. F is dense in the t.v.s. E
means that every element of E is the limit of a filter on F , not necessarily of
a sequence of elements in F .

We will focus now on approximation of Ck functions by C∞ functions with
compact support. First of all, let us give an example of such a function on
Rd, which will be particularly useful in the rest of this section.

Example of a C∞c -function on Rd

Consider for any x ∈ Rd:

ρ(x) :=

{
a exp

(
− 1

1−|x|2

)
for |x| < 1

0 for |x| ≥ 1
, (1.15)

where

a :=

(∫
{y∈Rd:|y|<1}

exp

(
− 1

1− |x|2

)
dx

)−1

.

Note that ∫
Rd
ρ(x) dx = 1 (1.16)

and supp(ρ) := {x ∈ Rd : |x| ≤ 1} which is compact in Rd.
Let us now check that ρ is a C∞ function on Rd. Note that the function ρ

is an analytic function about every point in the open ball {x ∈ Rd : |x| < 1}
(i.e. its Taylor’s expansion about any such a point has a nonzero radius of
convergence) and ρ is obviously smooth in {x ∈ Rd : |x| > 1}, so the only
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question is to check what happens for |x| = 1. As ρ is rotation-invariant, it
suffices to check if the function of one real variable:{

exp
(
− 1

1−t2

)
for |t| < 1

0 for |t| ≥ 1
,

is C∞ at the points t = 1 and t = −1. Since

exp

(
− 1

1− t2

)
= exp

(
− 1

2(1− t)

)
exp

(
− 1

2(1 + t)

)
,

we actually need to only check that the function of one variable:{
exp

(
−1
s

)
for s > 0

0 for s ≤ 0
,

is C∞, which is a well-known fact! Hence, ρ ∈ C∞c (Rd).

Let us introduce now some notations which will be useful in the following.
For any ε > 0, we define

ρε(x) := ε−dρ
(x
ε

)
, ∀x ∈ Rd.

From the properties of ρ showed above, it easily follows that ρε ∈ C∞c (Rd)
with supp(ρε) := {x ∈ Rd : |x| ≤ ε} and that:∫

Rd
ρε(x) dx = 1. (1.17)

Indeed, by simply using the change of variables y = x
ε and (1.16) we get∫

Rd
ρε(x) dx =

∫
Rd
ε−dρ

(x
ε

)
dx =

∫
Rd
ρ(y) dy = 1.

Given a subset S of Rd and a point x ∈ Rd, we denote by d(x, S) the Euclidean
distance from x to S, i.e.

d(x, S) := inf
y∈S
|x− y|

and, for any ε > 0, we denote by Nε(S) the neighbourhood of order ε of S or
ε−neighbourhood of S i.e. the set

Nε(S) := {x ∈ Rd : d(x, S) ≤ ε}.
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Lemma 1.5.3. Let f ∈ Cc(Rd) and for any ε > 0 let us define the following
function on Rd:

fε(x) :=

∫
Rd
ρε(x− y)f(y) dy.

Then the following hold.
a) fε ∈ C∞c (Rd).
b) The support of fε is contained in the neighbourhood of order ε of the support

of f , i.e. supp(fε) ⊆ Nε (supp(f)).
c) When ε→ 0, fε → f uniformly in Rd.

Proof.
As all the derivatives w.r.t. to x of ρε(x− y)f(y) exist and the latter function
is continuous as product of continuous functions, we can apply Leibniz’ rule
and differentiate fε w.r.t. x by passing the derivative under the integral sign.
Hence, as ρε ∈ C∞(Rd), we have fε ∈ C∞(Rd). Moreover, the integral express-
ing fε is actually performed over the set of points y ∈ Rd such that y ∈ supp(f)
and that x − y ∈ supp(ρε), i.e. |x − y| ≤ ε. If x /∈ Nε (supp(f)) then there
would not exist such points and the integral would be just zero, which means
that x /∈ supp(fε). Indeed, if x /∈ Nε (supp(f)) then we would have for any
y ∈ supp(f) that |x − y| ≥ d(x, supp(f)) > ε, i.e. x − y /∈ supp(ρε), which
gives fε(x) = 0 and so (2). The latter also guarantees that fε has compact
support and so we can conclude that fε ∈ C∞c (Rd), i.e. (1) holds.

It remains to show that (3) holds.
As f is a continuous function which is identically zero outside a compact

set, f is uniformly continuous on Rd, i.e. ∀ η > 0, ∃ ε > 0 s.t. ∀x, y ∈ Rd

|x− y| < ε implies |f(x)− f(y)| ≤ η. (1.18)

Moreover, for any ε > 0 and any x ∈ Rd, by using (1.17) we easily get that:∫
Rd
ρε(x− y)dy =

∫
Rd
ρε(−z)dz =

∫
Rd
ρε(z)dz = 1. (1.19)

Therefore, for all x ∈ Rd we can write:

f(x)− fε(x) =

∫
Rd
ρε(x− y)(f(x)− f(y))dy

which together with (1.19) gives that:

|f(x)−fε(x)| ≤

 sup
y∈Rd
|x−y|<ε

|f(x)− f(y)|

∫
Rd
ρε(x−y)dy ≤ sup

y∈Rd
|x−y|<ε

|f(x)−f(y)|.
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Hence, using the latter together with (1.18), we get that ∀ η > 0, ∃ ε > 0 s.t.
∀x ∈ Rd,∀ε ≤ ε

|f(x)− fε(x)| ≤ sup
y∈Rd
|x−y|<ε

|f(x)− f(y)| ≤ sup
y∈Rd
|x−y|<ε

|f(x)− f(y)| ≤ η,

i.e. fε → f uniformly on Rd when ε→ 0.

Corollary 1.5.4. Let f ∈ Ckc (Rd) with 0 ≤ k ≤ ∞ integer and for any ε > 0
let us define fε as in Lemma 1.5.3. Then, for any p = (p1, . . . , pd) ∈ Nd0 such
that |p| ≤ k, Dpfε → Dpf uniformly on Rd when ε→ 0.

Proof. (Christmas assignment, Exercise 2)

Before proving our approximation theorem by C∞c functions, let us recall
that a sequence of subsets Sj of Rd converges to a subset S of Rd if:

∀ε > 0, ∃Jε > 0 s.t. ∀j ≥ Jε, Sj ⊂ Nε(S) and S ⊂ Nε(Sj).

Theorem 1.5.5. Let 0 ≤ k ≤ ∞ be an integer and Ω be an open set of Rd.
Any function f ∈ Ck(Ω) is the limit of a sequence (fj)j∈N of functions in
C∞c (Ω) such that, for each compact subset K of Ω, the set K ∩ supp(fj) con-
verges to K ∩ supp(f).

Proof.
Let (Ωj)j∈N0 be a sequence of open subsets whose union is equal to Ω and
such that, for each j ≥ 1, Ωj−1 is compact and contained in Ωj . Define
dj := d(Ωj−1,Ω

c
j), where Ωc

j denotes the complement of Ωj , then we have
dj > 0 for all j ∈ N. We can therefore construct for each j ∈ N a function
gj ∈ C(Ω) with the following properties:

gj(x) = 1 if d(x,Ωc
j) ≥

3

4
dj , and gj(x) = 0 if d(x,Ωc

j) ≤
dj
2
.

Note that supp(gj) ⊆ Ωj and so gj ∈ Cc(Ω). Define εj :=
dj
4 and consider the

function:

hj(x) :=

∫
Rd
ρεj (x− y)gj(y) dy.

If x ∈ Ωj−1 and x− y ∈ supp(ρεj ), i.e. |x− y| ≤ dj
4 , then we have:

d(y,Ωc
j) ≥ d(x,Ωc

j)− |x− y| ≥ dj −
dj
4

=
3

4
dj
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which implies gj(y) = 1 and so hj(x) =
∫
Rd ρεj (x−y) dy = 1 in view of (1.19).

Hence, hj ≡ 1 on Ωj−1.
Since gj ∈ Cc(Ω), we can apply Lemma 1.5.3 to the functions hj and get

that hj ∈ C∞c (Ω). Moreover, as hj ≡ 1 on Ωj−1, it is clear that hj → 1 in
C∞(Ω) when j →∞.

Given any function f ∈ Ck(Ω), we have that hjf ∈ Ckc (Ω) as it is product
of a C∞ function with a Ck function and supp(hjf) ⊆ supp(hj) ∩ supp(f) ⊆
supp(hj) which is compact. Also, since hj → 1 in C∞(Ω) as j →∞, we have
that hjf → f in Ck(Ω) as j →∞.

Note that if K is an arbitrary compact subset of Ω, then there exists j ∈ N
large enough that K ⊂ Ωj−1 and so s.t. hj(x) = 1 for all x ∈ K, which implies

supp(hjf) ∩K = supp(f) ∩K. (1.20)

So far we have approximated f ∈ Ck(Ω) by functions in Ckc (Ω), namely the
functions hjf , but we want to approximate f by functions C∞c (Ω).

Suppose that 0 ≤ k < ∞. By applying Lemma 1.5.3 and Corollary 1.5.4
to each hjf ∈ Ckc (Ω) we can construct a function fj ∈ C∞c (Ω) such that
supp(fj) ⊆ N 1

j
(supp(hjf)) and for any p = (p1, . . . , pd) ∈ Nd0 with |p| ≤ k we

have that

∃jp1 ∈ N : ∀j ≥ jp1 , sup
x∈Ω
|Dp (fj(x)− hj(x)f(x))| ≤ 1

j
.

Hence, we have

∃j1 ∈ N : ∀j ≥ j1, sup
|p|≤k

sup
x∈Ω
|Dp (fj(x)− hj(x)f(x))| ≤ 1

j
.

As we also know that hjf → f as j →∞ in the Ck−topology, it is easy to see
that fj → f as j →∞ in the Ck-topology.

Let K be a compact subset of Ω, then there exists j̃ ∈ N large enough
that K ⊂ Ωj̃−1. Hence, for any j ≥ j̃ we have that (1.20) holds and also that
supp(fj) ⊆ N 1

j
(supp(hjf)). These properties jointly imply that

K ∩ supp(fj) ⊆ N 1
j
(K ∩ supp(hjf)) = N 1

j
(K ∩ supp(f)), ∀j ≥ j̃.

Therefore, for any ε > 0 we can take J
(1)
ε := max{j̃, 1

ε} and so for any j ≥ J (1)
ε

we get K ∩ supp(fj) ⊆ Nε(K ∩ supp(f)).
Also for any ε > 0 there exists c > 0 such that

K ∩ supp(f) ⊆ {x ∈ K : |f(x)| ≥ c}+ {x ∈ Ω : |x| ≤ ε} . (1.21)
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If we choose now J
(2)
ε ∈ N large enough that both K ⊂ Ω

J
(2)
ε −1

and 1

J
(2)
ε

≤ c
2 ,

then (by the uniform convergence of fj to f) for any x ∈ K and any j ≥ J (2)
ε

we have that |fj(x)− f(x)| ≤ 1
j ≤

c
2 and so that

{x ∈ K : |f(x)| ≥ c} ⊆ K ∩ supp(fj). (1.22)

Indeed, if for any x ∈ K such that |f(x)| ≥ c we had fj(x) = 0, then we would
get c ≤ |f(x)| = |fj(x)− f(x)| ≤ c

2 which is a contradiction.
Then, by (1.21) and (1.22), we have that:

K ∩ supp(f) ⊆ (K ∩ supp(fj)) + {x ∈ Ω : |x| ≤ ε} =: Aj

and it is easy to show that Aj is actually contained in Nε(K ∩ supp(fj)). In
fact, if x ∈ Aj then x = z + w for some z ∈ K ∩ supp(fj) and w ∈ Ω s.t.
|w| ≤ ε; thus we have

d(x,K∩supp(fj)) = inf
y∈K∩supp(fj)

|z+w−y| ≤ inf
y∈K∩supp(fj)

|z−y|+|w| = |w| ≤ ε.

Hence, for all j ≥ max{J (1)
ε , J

(2)
ε } we have both K ∩ supp(fj) ⊆ Nε(K ∩

supp(f)) and K ∩ supp(f) ⊆ Nε(K ∩ supp(fj)).
It is easy to work out the analogous proof in the case when k =∞ (do it

as an additional exercise).

We therefore have the following two corollaries.

Corollary 1.5.6. Let 0 ≤ k ≤ ∞ be an integer and Ω be an open set of Rd.
C∞c (Ω) is sequentially dense in Ck(Ω).

Corollary 1.5.7. Let 0 ≤ k ≤ ∞ be an integer and Ω be an open set of Rd.
C∞c (Ω) is dense in Ck(Ω).

With a quite similar proof scheme to the one used in Theorem 1.5.5 (for
all the details see the first part of [5, Chapter 15]) is possible to show that:

Proposition 1.5.8. Let 0 ≤ k ≤ ∞ be an integer and Ω be an open set
of Rd. Every function in Ckc (Ω) is the limit in the Ck-topology of a sequence
of polynomials in d−variables.

Hence, by combining this result with Corollary 1.5.6, we get that

Corollary 1.5.9. Let 0 ≤ k ≤ ∞ be an integer and Ω be an open set of Rd.
Polynomials with d variables in Ω form a sequentially dense linear subspace
of Ck(Ω).
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Chapter 2

Bounded subsets of topological vector spaces

In this chapter we will study the notion of bounded set in any t.v.s. and
analyzing some properties which will be useful in the following and especially
in relation with duality theory. Since compactness plays an important role in
the theory of bounded sets, we will start this chapter by recalling some basic
definitions and properties of compact subsets of a t.v.s..

2.1 Preliminaries on compactness
Let us recall some basic definitions of compact subset of a topological space
(not necessarily a t.v.s.)

Definition 2.1.1. A topological space X is said to be compact if X is Haus-
dorff and if every open covering {Ωi}i∈I of X contains a finite subcovering,
i.e. for any collection {Ωi}i∈I of open subsets of X s.t.

⋃
i∈I Ωi = X there

exists a finite subset J ⊆ I s.t.
⋃
j∈J Ωj = X.

By going to the complements, we obtain the following equivalent definition
of compactness.

Definition 2.1.2. A topological space X is said to be compact if X is Haus-
dorff and if every family of closed sets {Fi}i∈I whose intersection is empty
contains a finite subfamily whose intersection is empty, i.e. for any collection
{Fi}i∈I of closed subsets of X s.t.

⋂
i∈I Fi = ∅ there exists a finite subset

J ⊆ I s.t.
⋂
j∈J Fj = ∅.

Definition 2.1.3. A subset K of a topological space X is said to be compact if
K endowed with the topology induced by X is Hausdorff and for any collection
{Ωi}i∈I of open subsets of X s.t.

⋃
i∈I Ωi ⊇ K there exists a finite subset

J ⊆ I s.t.
⋃
j∈J Ωj ⊇ K.

Let us state without proof a few well-known properties of compact spaces.

33



2. Bounded subsets of topological vector spaces

Proposition 2.1.4.

1. A closed subset of a compact space is compact.

2. Finite unions of compact sets are compact.

3. Arbitrary intersections of compact subsets of a Hausdorff topological
space are compact.

4. Let f be a continuous mapping of a compact space X into a Hausdorff
topological space Y . Then f(X) is a compact subset of Y .

5. Let f be a one-to-one-continuous mapping of a compact space X onto a
compact space Y . Then f is a homeomorphism.

6. Let τ1, τ2 be two Hausdorff topologies on a set X. If τ1 ⊆ τ2 and (X, τ2)
is compact then τ1 ≡ τ2.

In the following we will almost always be concerned with compact subsets
of a Hausdorff t.v.s. E carrying the topology induced by E, and so which
are themselves Hausdorff t.v.s.. Therefore, we are now introducing a useful
characterization of compactness in Hausdorff topological spaces.

Theorem 2.1.5. Let X be a Hausdorff topological space. X is compact if and
only if every filter on X has at least one accumulation point.

Proof.
Suppose that X is compact. Let F be a filter on X and C := {M : M ∈ F}. As
F is a filter, no finite intersection of elements in C can be empty. Therefore, by
compactness, the intersection of all elements in C cannot be empty. Then there
exists at least a point x ∈M for all M ∈ F , i.e. x is an accumulation point of
F . Conversely, suppose that every filter on X has at least one accumulation
point. Let φ be a family of closed sets whose total intersection is empty. To
show that X is compact, we need to show that there exists a finite subfamily
of φ whose intersection is empty. Suppose by contradiction that no finite
subfamily of φ has empty intersection. Then the family φ′ of all the finite
intersections of subsets belonging to φ forms a basis of a filter F on X. By
our initial assumption, F has an accumulation point, say x. Thus, x belongs to
the closure of any subset belonging to F and in particular to any set belonging
to φ′ (as the elements in φ′ are themselves closed). This means that x belongs
to the intersection of all the sets belonging to φ′ , which is the same as the
intersection of all the sets belonging to φ. But we had assumed the latter to
be empty and so we have a contradiction.

Corollary 2.1.6. A compact subset K of a Hausdorff topological space X is
closed.
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2.2. Bounded subsets: definition and general properties

Proof.
Let K be a compact subset of a Hausdorff topological space X and let x ∈ K.
Denote by F(x) � K the filter generated by all the sets U ∩K where U ∈ F(x)
(i.e. U is a neighbourhood of x in X). By Theorem 2.1.5, F(x) � K has an
accumulation point x1 ∈ K. We claim that x1 ≡ x, which implies K = K and
so K closed. In fact, if x1 6= x then there would exist U ∈ F(x) s.t. X \ U is
a neighbourhood of x1 and thus x1 6= U ∩K, which would contradict the fact
that x1 is an accumulation point F(x) � K.

Last but not least let us recall the following two definitions.

Definition 2.1.7. A subset A of a topological space X is said to be relatively
compact if the closure A of A is compact in X.

Definition 2.1.8. A subset A of a Hausdorff t.v.s. E is said to be precompact
if A is relatively compact when viewed as a subset of the completion Ê of E.

2.2 Bounded subsets: definition and general properties

Definition 2.2.1. A subset B of a t.v.s. E is said to be bounded if for every
U neighbourhood of the origin in E there exists λ > 0 such that B ⊆ λU .

In rough words this means that a subset B of E is bounded if B can be
swallowed by any neighbourhood of the origin.

Proposition 2.2.2.

1. If any element in some basis of neighbourhoods of the origin of a t.v.s.
swallows a subset, then such a subset is bounded.

2. The closure of a bounded set is bounded.

3. Finite unions of bounded sets are bounded sets.

4. Any subset of a bounded set is a bounded set.

Proof. Let E be a t.v.s. and B ⊂ E.

1. Suppose that N is a basis of neighbourhoods of the origin o in E such
that for every N ∈ N there exists λN > 0 with B ⊆ λNN . Then, by
definition of basis of neighbourhoods of o, for every U neighbourhood of
o in E there exists M ∈ N s.t. M ⊆ U . Hence, there exists λM > 0 s.t.
B ⊆ λMM ⊆ λU , i.e. B is bounded.

2. Suppose that B is bounded in E. Then, as there always exists a basis C of
neighbourhoods of the origin in E consisting of closed sets (see Corollary
2.1.14-a) in TVS-I), we have that for any C ∈ C there exists λ > 0 s.t.
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2. Bounded subsets of topological vector spaces

B ⊆ λC and thus B ⊆ λC = λC = λC. By Proposition 2.2.2-1, this is
enough to conclude that B is bounded in E.

3. Let n ∈ N and B1, . . . , Bn bounded subsets of E. As there always
exists a basis B of balanced neighbourhoods of the origin in E (see
Corollary 2.1.14-b) in TVS-I), we have that for any V ∈ B there exist
λ1, . . . , λn > 0 s.t. Bi ⊆ λiV for all i = 1, . . . , n. Then

⋃n
i=1Bi ⊆⋃n

i=1 λiV ⊆
(

max
i=1,...,n

λi

)
V , which implies the boundedness of

⋃n
i=1Bi

by Proposition 2.2.2-1.
4. Let B be bounded in E and let A be a subset of B. The boundedness

of B guarantees that for any neighbourhood U of the origin in E there
exists λ > 0 s.t. λU contains B and so A. Hence, A is bounded.

The properties in Proposition 2.2.2 lead to the following definition which
is dually corresponding to the notion of basis of neighbourhoods.

Definition 2.2.3. Let E be a t.v.s. A family {Bα}α∈I of bounded subsets
of E is called a basis of bounded subsets of E if for every bounded subset B
of E there is α ∈ I s.t. B ⊆ Bα.

This duality between neighbourhoods and bounded subsets will play an
important role in the study of the strong topology on the dual of a t.v.s.

Which sets do we know to be bounded in any t.v.s.?
• Singletons are bounded in any t.v.s., as every neighbourhood of the

origin is absorbing.
• Finite subsets in any t.v.s. are bounded as finite union of singletons.

Proposition 2.2.4. Compact subsets of a t.v.s. are bounded.

Proof. Let E be a t.v.s. and K be a compact subset of E. For any neigh-
bourhood U of the origin in E we can always find an open and balanced
neighbourhood V of the origin s.t. V ⊆ U . Then we have

K ⊆ E =

∞⋃
n=0

nV.

From the compactness of K, it follows that there exist finitely many integers
n1, . . . , nr ∈ N0 s.t.

K ⊆
r⋃
i=1

niV ⊆
(

max
i=1,...,r

ni

)
V ⊆

(
max
i=1,...,r

ni

)
U.

Hence, K is bounded in E.
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2.2. Bounded subsets: definition and general properties

This together with Corollary 2.1.6 gives that in any Hausdorff t.v.s. a
compact subset is always bounded and closed. In finite dimensional Hausdorff
t.v.s. we know that also the converse holds (because of Theorem 3.1.1 in
TVS-I) and thus the Heine-Borel property always holds, i.e.

K compact⇔ K bounded and closed.

This is not true, in general, in infinite dimensional t.v.s.

Example 2.2.5.
Let E be an infinite dimensional normed space. If every bounded and closed
subset in E were compact, then in particular all the balls centered at the origin
would be compact. Then the space E would be locally compact and so finite
dimensional as proved in Theorem 3.2.1 in TVS-I, which gives a contradiction.

There is however an important class of infinite dimensional t.v.s., the so-
called Montel spaces, in which the Heine-Borel property holds. Note that
C∞(Rd), C∞c (Rd),S(Rd) are all Montel spaces.

Proposition 2.2.4 provides some further interesting classes of bounded sub-
sets in a Hausdorff t.v.s..

Corollary 2.2.6. Precompact subsets of a Hausdorff t.v.s. are bounded.

Proof.
Let K be a precompact subset of E. By Definition 2.1.8, this means that
the closure K̂ of K in in the completion Ê of E is compact. Let U be any
neighbourhood of the origin in E. Since the injection E → Ê is a topological
monomorphism, there is a neighbourhood Û of the origin in Ê such that
U = Û ∩ E. Then, by Proposition 2.2.4, there is a number λ > 0 such that
K̂ ⊆ λÛ . Hence, we get

K ⊆ K̂ ∩ E ⊆ λÛ ∩ E = λÛ ∩ λE = λ(Û ∩ E) = λU.

Corollary 2.2.7. Let E be a Hausdorff t.v.s.. The union of a converging
sequence in E and of its limit is a compact and so bounded closed subset in E.

Proof. (Christmas assignment, Exercise 6-c))

Corollary 2.2.8. Let E be a Hausdorff t.v.s. Any Cauchy sequence in E is
bounded.

Proof. By using Corollary 2.2.7, one can show that any Cauchy sequence S in
E is a precompact subset of E. Then it follows by Corollary 2.2.6 that S is
bounded in E.
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2. Bounded subsets of topological vector spaces

Note that a Cauchy sequence S in a Hausdorff t.v.s. E is not necessarily
relatively compact in E. Indeed, if this were the case, then its closure in
E would be compact and so, by Theorem 2.1.5, the filter associated to S
would have an accumulation point x ∈ E. Hence, by Proposition 1.3.8 and
Proposition 1.1.30 in TVS-I, we get S → x ∈ E which is not necessarily true
unless E is complete.

Proposition 2.2.9. The image of a bounded set under a continuous linear
map between t.v.s. is a bounded set.

Proof. Let E and F be two t.v.s., f : E → F be linear and continuous, and
B ⊆ E be bounded. Then for any neighbourhood V of the origin in F , f−1(V )
is a neighbourhood of the origin in E. By the boundedness of B in E, if follows
that there exists λ > 0 s.t. B ⊆ λf−1(V ) and thus, f(B) ⊆ λV . Hence, f(B)
is a bounded subset of F .

Corollary 2.2.10. Let L be a continuous linear functional on a t.v.s. E. If
B is a bounded subset of E, then sup

x∈B
|L(x)| <∞.

Let us now introduce a general characterization of bounded sets in terms
of sequences.

Proposition 2.2.11. Let E be any t.v.s.. A subset B of E is bounded if and
only if every sequence contained in B is bounded in E.

Proof. The necessity of the condition is obvious from Proposition 2.2.2-4. Let
us prove its sufficiency. Suppose that B is unbounded and let us show that it
contains a sequence of points which is also unbounded. As B is unbounded,
there exists a neighbourhood U of the origin in E s.t. for all λ > 0 we have
B 6⊆ λU . W.l.o.g. we can assume U balanced. Then

∀n ∈ N, ∃xn ∈ B s.t. xn /∈ nU. (2.1)

The sequence {xn}n∈N cannot be bounded. In fact, if it was bounded then
there would exist µ > 0 s.t. {xn}n∈N ⊆ µU ⊆ mU for some m ∈ N with
m ≥ µ and in particular xm ∈ mU , which contradicts (2.1).
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2.3. Bounded subsets of special classes of t.v.s.

2.3 Bounded subsets of special classes of t.v.s.

In this section we are going to study bounded sets in some of the special classes
of t.v.s. which we have encountered so far. First of all, let us notice that any
ball in a normed space is a bounded set and thus that in normed spaces there
exist sets which are at the same time bounded and neighbourhoods of the
origin. This property is actually a characteristic of all normable Hausdorff
locally convex t.v.s.. Recall that a t.v.s. E is said to be normable if its
topology can be defined by a norm, i.e. if there exists a norm ‖ · ‖ on E such
that the collection {Br : r > 0} with Br := {x ∈ E : ‖x‖ < r} is a basis of
neigbourhoods of the origin in E.

Proposition 2.3.1. Let E be a Hausdorff locally convex t.v.s.. If there is a
neighbourhood of the origin in E which is also bounded, then E is normable.

Proof. Let U be a bounded neighbourhood of the origin in E. As E is locally
convex, by Proposition 4.1.12 in TVS-I, we may always assume that U is
open and absolutely convex, i.e. convex and balanced. The boundedness of
U implies that for any balanced neigbourhood V of the origin in E there
exists λ > 0 s.t. U ⊆ λV . Hence, U ⊆ nV for all n ∈ N such that n ≥ λ,
i.e. 1

nU ⊆ V . Then the collection
{

1
nU
}
n∈N is a basis of neighbourhoods of

the origin o in E and, since E is a Hausdorff t.v.s., Corollary 2.2.4 in TVS-I
guarantees that ⋂

n∈N

1

n
U = {o}. (2.2)

Since E is locally convex and U is an open absolutely convex neighbourhood
of the origin, there exists a generating seminorm p on E s.t. U = {x ∈ E :
p(x) < 1} (see second part of proof of Theorem 4.2.9 in TVS-I). Then p must
be a norm, because p(x) = 0 implies x ∈ 1

nU for all n ∈ N and so x = 0 by
(2.2). Hence, E is normable.

An interesting consequence of this result is the following one.

Corollary 2.3.2. Let E be a locally convex metrizable space. If E is not
normable, then E cannot have a countable basis of bounded sets in E.

Proof. (Sheet 6, Exercise 1)

The notion of boundedness can be extended to linear maps between t.v.s..

Definition 2.3.3. Let E, F be two t.v.s. and f a linear map of E into F . f
is said to be bounded if for every bounded subset B of E, f(B) is a bounded
subset of F .
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2. Bounded subsets of topological vector spaces

We have already showed in Proposition 2.2.9 that any continuous linear
map between two t.v.s. is a bounded map. The converse is not true in general
but it holds for two special classes of t.v.s.: metrizable t.v.s. and LF-spaces.

Proposition 2.3.4. Let E be a metrizable t.v.s. and let f be a linear map of
E into a t.v.s. F . If f is bounded, then f is continuous.

Proof. Let f : E → F be a bounded linear map. Suppose that f is not
continuous. Then there exists a neighbourhood V of the origin in F whose
preimage f−1(V ) is not a neighbourhood of the origin in E. W.l.o.g. we
can always assume that V is balanced. As E is metrizable, we can take a
countable basis {Un}n∈N of neighbourhood of the origin in E s.t. Un ⊇ Un+1

for all n ∈ N. Then for all m ∈ N we have 1
mUm 6⊆ f

−1(V ) i.e.

∀m ∈ N, ∃xm ∈
1

m
Um s.t. f(xm) /∈ V. (2.3)

As for all m ∈ N we have mxm ∈ Um we get that the sequence {mxm}m∈N
converges to the origin o in E. In fact, for any neighbourhood U of the
origin o in E there exists n̄ ∈ N s.t. Un̄ ⊆ U . Then for all n ≥ n̄ we have
xn ∈ Un ⊆ Un̄ ⊆ U , i.e. {mxm}m∈N converges to o.

Hence, Proposition 2.2.7 implies that {mxm}m∈N0 is bounded in E and so,
since f is bounded, also {mf(xm)}m∈N0 is bounded in F . This means that
there exists ρ > 0 s.t. {mf(xm)}m∈N0 ⊆ ρV . Then for all n ∈ N with n ≥ ρ
we have f(xn) ∈ ρ

nV ⊆ V which contradicts (2.3).

To show that the previous proposition also hold for LF-spaces, we need to
introduce the following characterization of bounded sets in LF-spaces.

Proposition 2.3.5.
Let (E, τind) be an LF-space with defining sequence {(En, τn)}n∈N. A subset
B of E is bounded in E if and only if there exists n ∈ N s.t. B is contained
in En and B is bounded in En.

To prove this result we will need the following refined version of Lemma 1.3.3.

Lemma 2.3.6. Let Y be a locally convex space, Y0 a closed linear subspace of
Y equipped with the subspace topology, U a convex neighbourhood of the origin
in Y0, and x0 ∈ Y with x0 /∈ U . Then there exists a convex neighbourhood V
of the origin in Y such that x0 /∈ V and V ∩ Y0 = U .
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Proof.
By Lemma 1.3.3 we have that there exists a convex neighbourhood W of the
origin in Y such that W ∩ Y0 = U . Now we need to distinguish two cases:
-If x0 ∈ Y0 then necessarily x0 /∈ W since by assumption x0 /∈ U . Hence, we
are done by taking V := W .
-If x0 /∈ Y0, then let us consider the quotient Y/Y0 and the canonical map
φ : Y → Y/Y0. As Y0 is a closed linear subspace of Y and Y is locally convex,
we have that Y/Y0 is Hausdorff and locally convex. Then, since φ(x0) 6= o,
there exists a convex neighbourhood N of the origin o in Y/Y0 such that
φ(x0) /∈ N . Set Ω := φ−1(N). Then Ω is a convex neighbourhood of the origin
in Y such that x0 /∈ Ω and clearly Y0 ⊆ Ω (as φ(Y0) = o ∈ N). Therefore,
if we consider V := Ω ∩W then we have that: V is a convex neighbourhood
of the origin in Y , V ∩ Y0 = Ω ∩W ∩ Y0 = W ∩ Y0 = U and x0 /∈ V since
x0 /∈ Ω.

Proof. of Proposition 2.3.5
Suppose first that B is contained and bounded in some En. Let U be an

arbitrary neighbourhood of the origin in E. Then by Proposition 1.3.4 we
have that Un := U ∩ En is a neighbourhood of the origin in En. Since B is
bounded in En, there is a number λ > 0 such that B ⊆ λUn ⊆ λU , i.e. B is
bounded in E.

Conversely, assume that B is bounded in E. Suppose that B is not con-
tained in any of the En’s, i.e. ∀n ∈ N,∃xn ∈ B s.t. xn /∈ En. We will show
that the sequence {xn}n∈N is not bounded in E and so a fortiori B cannot be
bounded in E.
Since x1 /∈ E1 but x1 ∈ B ⊂ E, given an arbitrary convex neighbourhood U1

of the origin in E1 we can apply Lemma 2.3.6 and get that there exists U ′2
convex neighbourhood of the origin in E s.t. x1 /∈ U ′2 and U ′2 ∩ E1 = U1. As
τind � E2 = τ2, we have that U2 := U ′2 ∩ E2 is a convex neighbourhood of the
origin in E2 s.t. x1 /∈ U2 and U2 ∩ E1 = U ′2 ∩ E2 ∩ E1 = U ′2 ∩ E1 = U1.
Since x1 /∈ U2, we can apply once again Lemma 2.3.6 and proceed as above to
get that there exists V ′3 convex neighbourhood of the origin in E3 s.t. x1 /∈ V ′3
and V ′3 ∩E2 = U2. Since x2 /∈ E2 we also have 1

2x2 /∈ E2 and so 1
2x2 /∈ U2. By

applying again Lemma 2.3.6 and proceeding as above, we get that there exists
V3 convex neighbourhood of the origin in E3 s.t. 1

2x2 /∈ V3 and V3 ∩E2 = U2.
Taking U3 := V3 ∩ V ′3 we have that U3 ∩ E2 = U2 and x1,

1
2x2 /∈ U2.

By induction on n, we get a sequence {Un}n∈N such that for any n ∈ N:

• Un is a convex neighbourhood of the origin in En
• Un = Un+1 ∩ En
• x1,

1
2x2, . . . ,

1
nxn /∈ Un+1.
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Note that:
Un = Un+1∩En = Un+2∩En+1∩En = Un+2∩En = · · · = Un+k∩En, ∀k ∈ N.

Consider U :=
⋃∞
j=1 Uj , then for each n ∈ N we have

U ∩Un =

 n⋃
j=1

Uj ∩ Un

∪
 ∞⋃
j=n+1

Uj ∩ Un

 = Un ∪

( ∞⋃
k=1

Un+k ∩ Un

)
= Un,

i.e. U is a neighbourhood of the origin in (E, τind).
Suppose that {xj}j∈N is bounded in E then it should be swallowed by

U . Take a balanced neighbourhood V of the origin in E s.t. V ⊆ U . Then
there would exists λ > 0 s.t. {xj}j∈N ⊆ λV and so {xj}j∈N ⊆ nV for some
n ∈ N with n ≥ λ. In particular, we would have xn ∈ nV which would
imply 1

nxn ∈ V ⊆ U ; but this would contradict the third property of the Uj ’s
(i.e. 1

n /∈
⋃∞
j=1 Un+j =

⋃∞
j=n+1 Uj = U , since Uj ⊆ Uj+1 for any j ∈ N).

Hence, {xj}j∈N is not bounded in E and so B cannot be bounded in E. This
contradicts our assumption and so proves that B ⊆ En for some n ∈ N.

It remains to show that B is bounded in En. Let Wn be a neighbourhood
of the origin in En. By Proposition 1.3.4, there exists a neighbourhood W of
the origin in E such that W ∩En = Wn. Since B is bounded in E, there exists
µ > 0 s.t. B ⊆ µW and hence B = B∩En ⊆ µW∩En = µ(W∩En) = Wn.

Corollary 2.3.7. A bounded linear map from an LF- space into an arbitrary
t.v.s. is always continuous.

Proof. (Sheet 5, Exercise 2)
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Chapter 3

Topologies on the dual space of a t.v.s.

In this chapter we are going to describe a general method to construct a whole
class of topologies on the topological dual of a t.v.s. using the notion of polar
of a subset. Among these topologies, the so-called polar topologies, there
are: the weak topology, the topology of compact convergence and the strong
topology.

In this chapter we will denote by:

• E a t.v.s. over the field K of real or complex numbers.

• E∗ the algebraic dual of E, i.e. the vector space of all linear functionals
on E.

• E′ its topological dual of E, i.e. the vector space of all continuous linear
functionals on E.

Moreover, given x′ ∈ E′, we denote by 〈x′, x〉 its value at the point x of E, i.e.
〈x′, x〉 = x′(x). The bracket 〈·, ·〉 is often called pairing between E and E′.

3.1 The polar of a subset of a t.v.s.
Definition 3.1.1. Let A be a subset of E. We define the polar of A to be the
subset A◦ of E′ given by:

A◦ :=

{
x′ ∈ E′ : sup

x∈A
|〈x′, x〉| ≤ 1

}
.

Let us list some properties of polars:

a) The polar A◦ of a subset A of E is a convex balanced subset of E′.

b) If A ⊆ B ⊆ E, then B◦ ⊆ A◦.
c) (ρA)◦ = (1

ρ)A◦, ∀ ρ > 0,∀A ⊆ E.

d) (A ∪B)◦ = A◦ ∩B◦, ∀A,B ⊆ E.

e) If A is a cone in E, then A◦ ≡ {x′ ∈ E′ : 〈x′, x〉 = 0, ∀x ∈ A} and A◦ is a
linear subspace of E′. In particular, this property holds when A is a linear
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subspace of E and in this case the polar of A is called the orthogonal of
A, i.e. the set of all continuous linear forms on E which vanish identically
in A.

Proof. (Sheet 5, Exercise 3)

Proposition 3.1.2. Let E be a t.v.s.. If B is a bounded subset of E, then the
polar B◦ of B is an absorbing subset of E′.

Proof.
Let x′ ∈ E′. As B is bounded in E, Corollary 2.2.10 guarantees that any
continuous linear functional x′ on E is bounded on B, i.e. there exists a
constant M(x′) > 0 such that supx∈B |〈x′, x〉| ≤ M(x′). This implies that for
any λ ∈ K with |λ| ≤ 1

M(x′) we have λx′ ∈ B◦, since

sup
x∈B
|〈λx′, x〉| = |λ| sup

x∈B
|〈x′, x〉| ≤ 1

M(x′)
·M(x′) = 1.

3.2 Polar topologies on the topological dual of a t.v.s.

We are ready to define an entire class of topologies on the dual E′ of E,
called polar topologies. Consider a family Σ of bounded subsets of E with the
following two properties:

(P1) If A,B ∈ Σ, then ∃C ∈ Σ s.t. A ∪B ⊆ C.

(P2) If A ∈ Σ and λ ∈ K, then ∃B ∈ Σ s.t. λA ⊆ B.

Let us denote by Σ◦ the family of the polars of the sets belonging to Σ, i.e.

Σ◦ := {A◦ : A ∈ Σ} .

Claim: Σ◦ is a basis of neighbourhoods of the origin for a locally convex
topology on E′ compatible with the linear structure.

Proof. of Claim.
By Property a) of polars and by Proposition 3.1.2, all elements of Σ◦ are
convex balanced absorbing susbsets of E′. Also:

1. ∀ A◦, B◦ ∈ Σ◦, ∃C◦ ∈ Σ◦ s.t. C◦ ⊆ A◦ ∩B◦.
Indeed, if A◦ and B◦ in Σ◦ are respectively the polars of A and B in Σ,
then by (P1) there exists C ∈ Σ s.t. A ∪ B ⊆ C and so, by properties
b) and d) of polars, we get: C◦ ⊆ (A ∪B)◦ = A◦ ∩B◦.
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3.2. Polar topologies on the topological dual of a t.v.s.

2. ∀ A◦ ∈ Σ◦, ∀ ρ > 0, ∃B◦ ∈ Σ◦ s.t. B◦ ⊆ ρA◦.
Indeed, if A◦ in Σ◦ is the polar of A, then by (P2) there exists B ∈ Σ
s.t. 1

ρA ⊆ B and so, by properties b) and c) of polars, we get that

B◦ ⊆
(

1
ρA
)◦

= ρA◦.

By Theorem 4.1.14 in TVS-I, there exists a unique locally convex topology on
E′ compatible with the linear structure and having Σ◦ as a basis of neighbor-
hoods of the origin.

Definition 3.2.1. Given a family Σ of bounded subsets of a t.v.s. E s.t. (P1)
and (P2) hold, we call Σ−topology on E′ the locally convex topology defined
by taking, as a basis of neighborhoods of the origin in E′, the family Σ◦ of the
polars of the subsets that belong to Σ. We denote by E′Σ the space E′ endowed
with the Σ-topology.

It is easy to see from the definition that (Sheet 6, Exercise 1):
• The Σ−topology on E′ is generated by the following family of semi-

norms:

{pA : A ∈ Σ} , where pA(x′) := sup
x∈A
|〈x′, x〉|,∀x′ ∈ E′. (3.1)

• Define for any A ∈ Σ and ε > 0 the following subset of E′:

Wε(A) :=

{
x′ ∈ E′ : sup

x∈A
|〈x′, x〉| ≤ ε

}
.

The family B := {Wε(A) : A ∈ Σ, ε > 0} is a basis of neighbourhoods of
the origin for the Σ−topology on E′.

Proposition 3.2.2. A filter F ′ on E′ converges to an element x′ ∈ E′ in the
Σ-topology on E′ if and only if F ′ converges uniformly to x′ on each subset A
belonging to Σ, i.e. the following holds:

∀ε > 0,∃M ′ ∈ F ′ s.t. sup
x∈A
|〈x′, x〉 − 〈y′, x〉| ≤ ε, ∀ y′ ∈M ′. (3.2)

This proposition explain why the Σ−topology on E′ is often referred as
topology of the uniform converge over the sets of Σ.

Proof.
Suppose that (3.2) holds and let U be a neighbourhood of the origin in

the Σ−topology on E′. Then there exists ε > 0 and A ∈ Σ s.t. Wε(A) ⊆ U
and so

x′ +Wε(A) ⊆ x′ + U. (3.3)
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On the other hand, since we have that

x′ +Wε(A) =

{
x′ + y′ ∈ E′ : sup

x∈A
|〈y′, x〉| ≤ ε

}
=

{
z′ ∈ E′ : sup

x∈A
|〈z′ − x′, x〉| ≤ ε

}
, (3.4)

the condition (3.2) together with (3.3) gives that

∃M ′ ∈ F ′ s.t.M ′ ⊆ x′ +Wε(A) ⊆ x′ + U.

The latter implies that x′+U ∈ F ′ since F ′ is a filter and so the family of all
neighbourhoods of x′ in the Σ−topology on E′ is contained in F ′, i.e. F ′ → x′.

Conversely, if F ′ → x′, then for any neighbourhood V of x′ in the Σ−topology
on E′ we have V ∈ F ′. In particular, for all A ∈ Σ and for all ε > 0 we have
x′+Wε(A) ∈ F ′. Then by taking M ′ := x′+Wε(A) and using (3.4), we easily
get (3.2).

The weak topology on E ′

The weak topology on E′ is the Σ−topology corresponding to the family Σ of
all finite subsets of E and it is usually denoted by σ(E′, E) (this topology is
often also referred with the name of weak*-topology or weak dual topology).
We denote by E′σ the space E′ endowed with the topology σ(E′, E).

A basis of neighborhoods of σ(E′, E) is given by the family

Bσ := {Wε(x1, . . . , xr) : r ∈ N, x1, . . . , xr ∈ E, ε > 0}

where

Wε(x1, . . . , xr) :=
{
x′ ∈ E′ : |〈x′, xj〉| ≤ ε, j = 1, . . . , r

}
. (3.5)

Note that a sequence {x′n}n∈N of elements in E′ converges to the origin
in the weak topology if and only if at each point x ∈ E the sequence of their
values {〈x′n, x〉}n∈N converges to zero in K (see Sheet 6, Exercise 2). In other
words, the weak topology on E′ is nothing else but the topology of pointwise
convergence in E, when we look at continuous linear functionals on E simply
as functions on E.

The topology of compact convergence on E ′

The topology of compact convergence on E′ is the Σ−topology corresponding
to the family Σ of all compact subsets of E and it is usually denoted by
c(E′, E). We denote by E′c the space E′ endowed with the topology c(E′, E).
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The strong topology on E’
The strong topology on E′ is the Σ−topology corresponding to the family Σ of
all bounded subsets of E and it is usually denoted by b(E′, E). As a filter in
E′ converges to the origin in the strong topology if and only if it converges to
the origin uniformly on every bounded subset of E (see Proposition 3.2.2), the
strong topology on E′ is sometimes also referred as the topology of bounded
convergence. When E′ carries the strong topology, it is usually called the
strong dual of E and denoted by E′b.

In general we can compare two polar topologies by using the following
criterion: If Σ1 and Σ2 are two families of bounded subsets of a t.v.s. E such
that (P1) and (P2) hold and Σ1 ⊇ Σ2, then the Σ1-topology is finer than
the Σ2-topology. In particular, this gives the following comparison relations
between the three polar topologies on E′ introduced above:

σ(E′, E) ⊆ c(E′, E) ⊆ b(E′, E).

Proposition 3.2.3. Let Σ be a family of bounded subsets of a t.v.s. E s.t.
(P1) and (P2) hold. If the union of all subsets in Σ is dense in E, then E′Σ
is Hausdorff.

Proof. Assume that the union of all subsets in Σ is dense in E. As the
Σ−topology is locally convex, to show that E′Σ is Hausdorff is enough to check
that the family of seminorms in (3.1) is separating (see Proposition 4.3.3 in
TVS-I). Suppose that pA(x′) = 0 for all A ∈ Σ, then

sup
x∈ A

|〈x′, x〉| = 0, ∀A ∈ Σ

which gives

〈x′, x〉 = 0, ∀x ∈
⋃
A∈Σ

A.

As the continuous functional x′ is zero on a dense subset of E, it has to be
identically zero on the whole E. Hence, the family {pA : A ∈ Σ} is a separating
family of seminorms which generates the Σ−topology on E′.

Corollary 3.2.4. The topology of compact convergence, the weak and the
strong topologies on E′ are all Hausdorff.

Let us consider now for any x ∈ E the linear functional vx on E′ which
associates to each element of the dual E′ its “value at the point x”, i.e.

vx : E′ → K
x′ 7→ 〈x′, x〉.
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Clearly, each vx ∈ (E′)∗ but when can we say that vx ∈ (E′Σ)′? Can we find
conditions on Σ which guarantee the continuity of vx w.r.t. the Σ−topology?

Fixed an arbitrary x ∈ E, vx is continuous on E′Σ if and only if for any
ε > 0, v−1

x (B̄ε(0)) is a neighbourhood of the origin in E′ w.r.t. the Σ−topology
(B̄ε(0) denotes the closed ball of radius ε and center 0 in K). This means that

∀ ε > 0, ∃A ∈ Σ : A◦ ⊆ v−1
x (B̄ε(0)) = {x′ ∈ E′ : |〈x′, x〉| ≤ ε}

i.e.

∀ ε > 0, ∃A ∈ Σ :

∣∣∣∣〈x′, 1

ε
x〉
∣∣∣∣ ≤ 1, ∀x′ ∈ A◦. (3.6)

Then it is easy to see that the following holds:

Proposition 3.2.5. Let Σ be a family of bounded subsets of a t.v.s. E s.t.
(P1) and (P2) hold. If Σ covers E then for every x ∈ E the value at x is a
continuous linear functional on E′Σ, i.e. vx ∈ (E′Σ)′.

Proof. If E ⊆
⋃
A∈ΣA then for any x ∈ E and any ε > 0 we have 1

ε ∈ A for
some A ∈ Σ and so |〈x′, 1

εx〉| ≤ 1 for all x′ ∈ A◦. This means that (3.6) is
fulfilled, which is equivalent to vx being continuous w.r.t. the Σ−topology on
E′.

The previous proposition is useful to get the following characterization of
the weak topology on E′, which is often taken as a definition for this topology.

Proposition 3.2.6. Let E be a t.v.s.. The weak topology on E′ is the coarsest
topology on E′ such that, for all x ∈ E, vx is continuous.

Proof. (Sheet 6, Exercise 3)

Proposition 3.2.5 means that, if Σ covers E then the image of E under the
canonical map

ϕ : E → (E′Σ)∗

x 7→ vx.

is contained in the topological dual of E′Σ, i.e. ϕ(E) ⊆ (E′Σ)′. In general, the
canonical map ϕ : E → (E′Σ)′ is neither injective or surjective. However, when
we restrict our attention to locally convex Hausdorff t.v.s., the following con-
sequence of Hahn-Banach theorem guarantees the injectivity of the canonical
map.

Proposition 3.2.7. If E is a locally convex Hausdorff t.v.s with E 6= {o},
then for every o 6= x0 ∈ E there exists x′ ∈ E′ s.t. 〈x′, x0〉 6= 0, i.e. E′ 6= {o}.
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Proof.
Let o 6= x0 ∈ E. Since (E, τ) is a locally convex Hausdorff t.v.s, Proposition
4.3.3 in TVS-I ensures that τ is generated by a separating family P of semi-
norms on E and so there exists p ∈ P s.t. p(x0) 6= 0. Take M := span{x0}
and define the ` : M → K by `(αx0) := αp(x0) for all α ∈ K. The functional
` is clearly linear and continuous on M . Then by the Hahn-Banach theorem
(see Theorem 5.1.1 in TVS-I) we have that there exists a linear functional
x′ : E → K such that x′(m) = `(m) for all m ∈ M and |x′(x)| ≤ p(x) for all
x ∈ E. Hence, x′ ∈ E′ and 〈x′, x0〉 = `(x0) = p(x0) 6= 0.

Corollary 3.2.8. Let E be a non-trivial locally convex Hausdorff t.v.s and Σ
a family of bounded subsets of E s.t. (P1) and (P2) hold and Σ covers E.
Then the canonical map ϕ : E → (E′Σ)′ is injective.

Proof. Let o 6= x0 ∈ E. By Proposition 3.2.7, we know that there exists
x′ ∈ E′ s.t. vx(x′) 6= 0 which proves that vx is not identically zero on E′ and
so that Ker(ϕ) = {o}. Hence, ϕ is injective.

In the particular case of the weak topology on E′ the canonical map ϕ :
E → (E′σ)′ is also surjective, and so E can be regarded as the dual of its weak
dual E′σ. To show this result we will need to use the following consequence of
Hahn-Banach theorem:

Lemma 3.2.9. Let Y be a closed linear subspace of a locally convex t.v.s. X.
If Y 6= X, then there exists f ∈ X ′ s.t. f is not identically zero on X but
identically vanishes on Y .

Proposition 3.2.10. Let E be a locally convex Hausdorff t.v.s. Then the
canonical map ϕ : E → (E′σ)′ is an isomorphism.

Proof. Let L ∈ (E′σ)′. By the definition of σ(E′, E) and Proposition 4.6.1 in
TVS-I, we have that there exist F ⊂ E with |F | <∞ and C > 0 s.t.

|L(x′)| ≤ CpF (x′) = C sup
x∈F
|〈x′, x〉|. (3.7)

Take M := span(F ) and d := dim(M). Consider an algebraic basis B :=
{e1, . . . , ed} of M and for each j ∈ {1, . . . , d} apply Lemma 3.2.9 to Y :=
span{B \ {ej}} and X := M . Then for each j ∈ {1, . . . , d} there exists fj :
M → K linear and continuous such that 〈fj , ek〉 = 0 if k 6= j and 〈fj , ej〉 6= 0.
W.l.o.g. we can assume 〈fj , ej〉 = 1. By applying Hanh-Banach theorem (see
Theorem 5.1.1 in TVS-I), we get that for each j ∈ {1, . . . , d} there exists e′j :
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E → K linear and continuous such that e′j �M= fj , in particular 〈e′j , ek〉 = 0
for k 6= j and 〈e′j , ej〉 = 1.

Let M ′ := span{e′1, . . . , e′d} ⊂ E′, xL :=
∑d

j=1 L(e′j)ej ∈ M and for any

x′ ∈ E′ define p(x′) :=
∑d

j=1〈x′, ej〉e′j ∈ M ′. Then for any x′ ∈ E′ we get
that:

〈x′, xL〉 =
d∑
j=1

L(e′j)〈x′, ej〉 = L(p(x′)) (3.8)

and also

〈x′ − p(x′), ek〉 = 〈x′, ek〉 −
d∑
j=1

〈x′, ej〉〈e′j , ek〉 = 〈x′, ek〉 − 〈x′, ek〉〈ek, ek〉 = 0

which gives

〈x′ − p(x′),m〉 = 0,∀m ∈M. (3.9)

Then for all x′ ∈ E′ we have:

|L(x′ − p(x′))|
(3.7)

≤ C sup
x∈F
|〈x′ − p(x′), x〉| (3.9)

= 0

which give that L(x′) = L(p(x′))
(3.8)
= 〈x′, xL〉 = vxL(x′). Hence, we have

proved that for every L ∈ (E′σ)′ there exists xL ∈ E s.t. ϕ(xL) ≡ vxL ≡ L,
i.e. ϕ : E → (E′σ)′ is surjective. Then we are done because the injectivity of
ϕ : E → (E′σ)′ follows by applying Corollary 3.2.8 to this special case.

Remark 3.2.11. The previous result suggests that it is indeed more conve-
nient to restrict our attention to locally convex Hausdorff t.v.s. when dealing
with weak duals. Moreover, as showed in Proposition 3.2.7, considering locally
convex Hausdorff t.v.s has the advantage of avoiding the pathological situation
in which the topological dual of a non-trivial t.v.s. is reduced to the only zero
functional (for an example of a t.v.s. on which there are no continuous linear
functional than the trivial one, see Exercise 4 in Sheet 6).

3.3 The polar of a neighbourhood in a locally convex t.v.s.

Let us come back now to the study of the weak topology and prove one of
the milestones of the t.v.s. theory: the Banach-Alaoglu-Bourbaki theorem. To
prove this important result we need to look for a moment at the algebraic
dual E∗ of a t.v.s. E. In analogy to what we did in the previous section, we
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can define the weak topology on the algebraic dual E∗ (which we will denote
by σ(E∗, E)) as the coarsest topology such that for any x ∈ E the linear
functional wx is continuous, where

wx : E∗ → K
x∗ 7→ 〈x∗, x〉 := x∗(x).

(3.10)

(Note that wx � E′ = vx). Equivalently, the weak topology on the algebraic
dual E∗ is the locally convex topology on E∗ generated by the family {qF :
F ⊆ E, |F | < ∞} of seminorms qF (x∗) := supx∈F |〈x∗, x〉| on E∗. It is then
easy to see that σ(E′, E) = σ(E∗, E) � E′.

An interesting property of the weak topology on the algebraic dual of a
t.v.s. is the following one:

Proposition 3.3.1. If E is a t.v.s. over K, then its algebraic dual E∗ endowed
with the weak topology σ(E∗, E) is topologically isomorphic to the product of
dim(E) copies of the field K endowed with the product topology.

Proof.
Let {ei}i∈I be an algebraic basis of E, i.e. ∀x ∈ E, ∃ {xi}i∈I ∈ Kdim(E) s.t.
x =

∑
i∈I xiei. For any linear functions L : E → K and any x ∈ E we then

have L(x) =
∑

i∈I xiL(ei). Hence, L is completely determined by the sequence

{L(ei)}i∈I∈Kdim(E). Conversely, every element u :={ui}i∈I ∈Kdim(E) uniquely
defines the linear functional Lu on E via Lu(ei) := ui for all i ∈ I. This
completes the proof that E∗ is algebraically isomorphic to Kdim(E). Moreover,
the collection {Wε(ei1 , . . . , eir) : ε > 0, r ∈ N, i1, . . . , ir ∈ I}, where

Wε(ei1 , . . . , eir) := {x∗ ∈ E∗ : |〈x∗, eij 〉| ≤ ε, for j = 1, . . . , r},

is a basis of neighbourhoods of the origin in (E∗, σ(E∗, E)). Via the isomor-
phism described above, we have that for any ε > 0, r ∈ N, and i1, . . . , ir ∈ I:

Wε(ei1 , . . . , eir) ≈
{
{ui}i∈I ∈ Kdim(E) : |uij | ≤ ε, for j = 1, . . . , r

}
=

r∏
j=1

B̄ε(0)×
∏

I\{i1,...,ir}

K

and so Wε(ei1 , . . . , eir) is a neighbourhood of the product topology τprod on
Kdim(E) (recall that we always consider the euclidean topology on K). There-
fore, (E∗, σ(E∗, E)) is topological isomorphic to

(
Kdim(E), τprod

)
.
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Let us now focus our attention on the polar of a neighbourhood U of the
origin in a non-trivial locally convex Hausdorff t.v.s. E. We are considering
here only non-trivial locally convex Hausdorff t.v.s. in order to be sure to
have non-trivial continuous linear functionals (see Remark 3.2.11) and so to
make a meaningful analysis on the topological dual.

First of all let us observe that:

{x∗ ∈ E∗ : sup
x∈U
|〈x∗, x〉| ≤ 1} ≡ U◦ := {x′ ∈ E′ : sup

x∈U
|〈x′, x〉| ≤ 1}. (3.11)

Indeed, since E′ ⊆ E∗, we clearly have U◦ ⊆ {x∗ ∈ E∗ : supx∈U |〈x∗, x〉| ≤ 1}.
Moreover, any linear functional x∗ ∈ E∗ s.t. supx∈A |〈x∗, x〉| ≤ 1 is continuous
on E and it is therefore an element of E′.

It is then quite straightforward to show that:

Proposition 3.3.2. The polar of a neighbourhood U of the origin in E is
closed w.r.t. σ(E∗, E).

Proof. By (3.11) and (3.10), it is clear that U◦ =
⋂
x∈Aw

−1
x ([−1, 1]). On

the other hand, by definition of σ(E∗, E) we have that wx is continuous on
(E∗, σ(E∗, E)) for all x ∈ E and so each w−1

x ([−1, 1]) is closed in (E∗, σ(E∗, E)).
Hence, U◦ is closed in (E∗, σ(E∗, E)) as the intersection of closed subsets of
(E∗, σ(E∗, E)).

We are ready now to prove the famous Banach-Alaoglu-Bourbaki Theorem

Theorem 3.3.3 (Banach-Alaoglu-Bourbaki Theorem).
The polar of a neighbourhood U of the origin in a locally convex Hausdorff
t.v.s. E 6= {o} is compact in E′σ.

Proof.
Since U is a neighbourhood of the origin in E, U is absorbing in E, i.e.
∀x ∈ E, ∃Mx > 0 s.t.Mxx ∈ U . Hence, for all x ∈ E and all x′ ∈ U◦ we have
|〈x′,Mxx〉| ≤ 1, which is equivalent to:

∀x ∈ E, ∀x′ ∈ U◦, |〈x′, x〉| ≤ 1

Mx
. (3.12)

For any x ∈ E, the subset

Dx :=

{
α ∈ K : |α| ≤ 1

Mx

}
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is compact in K w.r.t. to the euclidean topology and so by Tychnoff’s theorem1

the subset P :=
∏
x∈E Dx is compact in

(
Kdim(E), τprod

)
.

Using the isomorphism introduced in Proposition 3.3.1 and (3.11), we get
that

U◦ ≈ {(〈x∗, x〉)x∈E : x∗ ∈ U◦}

and so by (3.12) we have that U◦ ⊂ P . Since Corollary 3.3.2 and Proposition
3.3.1 ensure that U◦ is closed in

(
Kdim(E), τprod

)
, we get that U◦ is a closed

subset of P . Hence, by Proposition 2.1.4–1, U◦ is compact
(
Kdim(E), τprod

)
and so in (E∗, σ(E∗, E)). As U◦ = E′ ∩ U◦ we easily see that U◦ is compact
in (E′, σ(E′, E)).

We briefly introduce now a nice consequence of Banach-Alaoglu-Bourbaki
theorem. Let us start by introducing a norm on the topological dual space E′

of a seminormed space (E, ρ):

ρ′(x′) := sup
x∈E:ρ(x)≤1

|〈x′, x〉|.

ρ′ is usually called the operator norm on E′.

Corollary 3.3.4. Let (E, ρ) be a normed space. The closed unit ball in E′

w.r.t. the operator norm ρ′ is compact in E′σ.

Proof. First of all, let us note that a normed space it is indeed a locally convex
Hausdorff t.v.s.. Then, by applying Banach-Alaoglu-Borubaki theorem to
the closed unit ball B̄1(o) in (E, ρ), we get that

(
B̄1(o)

)◦
is compact in E′σ.

The conclusion then easily follow by the observation that
(
B̄1(o)

)◦
actually

coincides with the closed unit ball in (E′, ρ′):(
B̄1(o)

)◦
= {x′ ∈ E′ : sup

x∈B̄1(o)

|〈x′, x〉| ≤ 1}

= {x′ ∈ E′ : sup
x∈E′,ρ(x)≤1

|〈x′, x〉| ≤ 1}

= {x′ ∈ E′ : ρ′(x′) ≤ 1}.

1Tychnoff’s theorem: The product of an arbitrary family of compact spaces endowed
with the product topology is also compact.
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Chapter 4

Tensor products of t.v.s.

4.1 Tensor product of vector spaces

As usual, we consider only vector spaces over the field K of real numbers or
of complex numbers.

Definition 4.1.1.
Let E,F,M be three vector spaces over K and φ : E × F → M be a bilinear
map. E and F are said to be φ-linearly disjoint if:

(LD) For any r ∈ N, any {x1, . . . , xr} finite subset of E and any {y1, . . . , yr}
finite subset of F s.t.

∑r
i=1 φ(xi, yj) = 0, we have that both the following

conditions hold:

• if x1, . . . , xr are linearly independent in E, then y1 = · · · = yr = 0

• if y1, . . . , yr are linearly independent in F , then x1 = · · · = xr = 0

Recall that, given three vector spaces over K, a map φ : E × F → M is
said to be bilinear if:

∀x0 ∈ E, φx0 : F → M is linear
y → φ(x0, y)

and
∀ y0 ∈ F, φy0 : E → M is linear.

x → φ(x, y0)

Let us give a useful characterization of φ−linear disjointness.

Proposition 4.1.2. Let E,F,M be three vector spaces, and φ : E × F →M
be a bilinear map. Then E and F are φ−linearly disjoint if and only if:

(LD’) For any r, s ∈ N, x1, . . . , xr linearly independent in E and y1, . . . , ys
linearly independent in F , the set {φ(xi, yj) : i = 1, . . . , r, j = 1, . . . , s}
consists of linearly independent vectors in M .
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4. Tensor products of t.v.s.

Proof.
(⇒) Let x1, . . . , xr be linearly independent in E and y1, . . . , ys be linearly

independent in F . Suppose that
∑r

i=1

∑s
j=1 λijφ(xi, yj) = 0 for some λij ∈ K.

Then, using the bilinearity of φ and setting zi :=
∑s

j=1 λijyj , we easily get∑r
i=1 φ(xi, zi) = 0. As the xi’s are linearly independent in E, we derive from

(LD) that all zi’s have to be zero. This means that for each i ∈ {1, . . . , r} we
have

∑s
j=1 λijyj = 0, which implies by the linearly independence of the yj ’s

that λij = 0 for all i ∈ {1, . . . , r} and all j ∈ {1, . . . , s}.
(⇐) Let r ∈ N, {x1, . . . , xr} ⊆ E and {y1, . . . , yr} ⊆ F be such that∑r
i=1 φ(xi, yi) = 0. Suppose that the xis are linearly independent and let

{z1, . . . , zs} be a basis of span{y1, . . . , yr}. Then for each i ∈ {1, . . . , r} there
exist λij ∈ K s.t. yi =

∑s
j=1 λijzj and so by the bilinearity of φ we get:

0 =

r∑
i=1

φ(xi, yj) =

r∑
i=1

s∑
j=1

λijφ(xi, zj). (4.1)

By applying (LD’) to the xi’s and z′js, we get that all φ(xi, zj)’s are linearly
independent. Therefore, (4.1) gives that λij = 0 for all i ∈ {1, . . . , r} and all
j ∈ {1, . . . , s} and so yi = 0 for all i ∈ {1, . . . , r}. Exchanging the roles of the
xi’s and the yi’s we get that (LD) holds.

Definition 4.1.3. A tensor product of two vector spaces E and F over K is
a pair (M,φ) consisting of a vector space M over K and of a bilinear map
φ : E × F →M (canonical map) s.t. the following conditions are satisfied:
(TP1) The image of E × F spans the whole space M .
(TP2) E and F are φ−linearly disjoint.

We now show that the tensor product of any two vector spaces always
exists, satisfies the “universal property” and it is unique up to isomorphisms.
For this reason, the tensor product of E and F is usually denoted by E ⊗ F
and the canonical map by (x, y) 7→ x⊗ y.

Theorem 4.1.4. Let E, F be two vector spaces over K.
(a) There exists a tensor product of E and F .
(b) Let (M,φ) be a tensor product of E and F . Let G be any vector space over

K, and b any bilinear mapping of E × F into G. There exists a unique
linear map b̃ : M → G such that the following diagram is commutative.

E × F G

M

φ

b

b̃
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4.1. Tensor product of vector spaces

(c) If (M1, φ1) and (M2, φ2) are two tensor products of E and F , then there is
a bijective linear map u such that the following diagram is commutative.

E × F M2

M1

φ1

φ2

u

Proof.

(a) Let H be the vector space of all functions from E×F into K which vanish
outside a finite set (H is often called the free space of E × F ). For any
(x, y) ∈ E × F , let us define the function e(x,y) : E × F → K as follows:

e(x,y)(z, w) :=

{
1 if(z, w) = (x, y)
0 otherwise

.

Then BH := {e(x,y) : (x, y) ∈ E × F} forms a basis of H, i.e.

∀h ∈ H, ∃!λxy ∈ K : h =
∑
x∈E

∑
y∈F

λxye(x,y).

Let us consider now the following linear subspace of H:

N := span

e( n∑
i=1

aixi,
m∑

j=1
bjyj

) − n∑
i=1

m∑
j=1

aibje(xi,yj) : n,m ∈ N, ai, bj ∈ K, (xi, yj) ∈ E × F

 .

We then denote by M the quotient vector space H/N , by π the quotient
map from H onto M and by

φ : E × F → M
(x, y) → φ(x, y) := π

(
e(x,y)

)
.

It is easy to see that the map φ is bilinear. Let us just show the linearity
in the first variable as the proof in the second variable is just symmetric.
Fixed y ∈ F , for any a, b ∈ K and any x1, x2 ∈ E, we get that:

φ(ax1 + bx2, y)− aφ(x1, y)− bφ(x2, y) = π
(
e(ax1+bx2,y)

)
− aπ

(
e(x1,y)

)
− bπ

(
ex2,y)

)
= π

(
e(ax1+bx2,y) − ae(x1,y) − be(x2,y)

)
= 0,

where the last equality holds since e(ax1+bx2,y) − ae(x1,y) − be(x2,y) ∈ N .
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4. Tensor products of t.v.s.

We aim to show that (M,φ) is a tensor product of E and F . It is clear
from the definition of φ that

span(φ(E × F )) = span(π(BH)) = π(H) = M,

i.e. (TP1) holds. It remains to prove that E and F are φ−linearly dis-
joint. Let r ∈ N, {x1, . . . , xr} ⊆ E and {y1, . . . , yr} ⊆ F be such that∑r

i=1 φ(xi, yi) = 0. Suppose that the yi’s are linearly independent. For
any ϕ ∈ E∗, let us define the linear mapping Aφ : H → F by setting
Aϕ(e(x,y)) := ϕ(x)y. Then it is easy to check that Aϕ vanishes on N , so it

induces a map Ãϕ : M → F s.t. Ãϕ(π(f)) = A(f), ∀ f ∈ H. Hence, since∑r
i=1 φ(xi, yi) = 0 can be rewritten as π

(∑r
i=1 e(xi,yi)

)
= 0, we get that

0 = Ãϕ

(
π

(
r∑
i=1

e(xi,yi)

))
= Aϕ

(
r∑
i=1

e(xi,yi)

)
=

r∑
i=1

Aϕ(e(xi,yi)) =

r∑
i=1

ϕ(xi)yi.

This together with the linear independence of the yi’s implies ϕ(xi) = 0
for all i ∈ {1, . . . , r}. Since the latter holds for all ϕ ∈ E∗, we have that
xi = 0 for all i ∈ {1, . . . , r}. Exchanging the roles of the xi’s and the yi’s
we get that (LD) holds, and so does (TP2) .

(b) Let (M,φ) be a tensor product of E and F , G a vector space and b :
E × F → G a bilinear map. Consider {xα}α∈A and {yβ}β∈B bases of E
and F , respectively. We know that {φ(xα, yβ) : α ∈ A, β ∈ B} forms a
basis of M , as span(φ(E×F )) = M and, by Proposition 4.1.2, (LD’) holds
so the φ(xα, yβ)’s for all α ∈ A and all β ∈ B are linearly independent.
The linear mapping b̃ will therefore be the unique linear map of M into
G such that

∀α ∈ A, ∀β ∈ B, b̃(φ(xα, yβ)) = b(xα, yβ).

Hence, the diagram in (b) commutes.

(c) Let (M1, φ1) and (M2, φ2) be two tensor products of E and F . Then using
twice the universal property (b) we get that there exist unique linear maps
u : M1 → M2 and v : M2 → M1 such that the following diagrams both
commute:

E × F M2

M1

φ1

φ2

u

E × F M1

M2

φ2

φ1

v
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4.1. Tensor product of vector spaces

Then combining u ◦ φ1 = φ2 with v ◦ φ2 = φ1, we get that u and v are
one the inverse of the other. Hence, there is an algebraic isomorphism
between M1 and M2.

It is now natural to introduce the concept of tensor product of linear maps.

Proposition 4.1.5. Let E,F,E1, F1 be four vector spaces over K, and let
u : E → E1 and v : F → F1 be linear mappings. There is a unique linear map
of E ⊗ F into E1 ⊗ F1 , called the tensor product of u and v and denoted by
u⊗ v, such that

(u⊗ v)(x⊗ y) = u(x)⊗ v(y), ∀x ∈ E, ∀ y ∈ F.

Proof.
Let us define the mapping

b : E × F → E1 ⊗ F1

(x, y) 7→ b(x, y) := u(x)⊗ v(y),

which is clearly bilinear because of the linearity of u and v and the bilinearity
of the canonical map of the tensor product E1 ⊗ F1. Then by the universal
property there is a unique linear map b̃ : E ⊗ F → E1 ⊗ F1 s.t. the following
diagram commutes:

E × F E1 ⊗ F1

E ⊗ F

⊗

b

b̃

i.e. b̃(x ⊗ y) = b(x, y), ∀ (x, y) ∈ E × F. Hence, using the definition of b, we
get that b̃ ≡ u⊗ v.

Examples 4.1.6.

1. Let n,m ∈ N, E = Kn and F = Km. Then E ⊗ F = Knm is a tensor
product of E and F whose canonical bilinear map φ is given by:

φ : E × F → Knm(
(xi)

n
i=1, (yj)

m
j=1

)
7→ (xiyj)1≤i≤n,1≤j≤m.
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4. Tensor products of t.v.s.

2. Let X and Y be two sets. For any functions f : X → K and g : Y → K,
we define:

f ⊗ g : X × Y → K
(x, y) 7→ f(x)g(y).

Let E (resp. F ) be the linear space of all functions from X (resp. Y )
to K endowed with the usual addition and multiplication by scalars. We
denote by E ⊗ F the linear subspace of the space of all functions from
X × Y to K spanned by the elements of the form f ⊗ g for all f ∈ E
and g ∈ F . Then E ⊗ F is actually a tensor product of E and F (see
Sheet 7, Exercise 1).

Given X and Y open subsets of Rn and Rm respectively, we can use the
definitions in Example 2 above to construct the tensors Ck(X)⊗Cl(Y ) for any
1 ≤ k, l ≤ ∞. The approximation results in Section 1.5 imply:

Theorem 4.1.7. Let X and Y open subsets of Rn and Rm respectively. Then
C∞c (X)⊗ C∞c (Y ) is sequentially dense in C∞c (X × Y ).

Proof. (see Sheet 7, Exercise 2).

4.2 Topologies on the tensor product of locally convex t.v.s.

Given two locally convex t.v.s. E and F , there various ways to construct a
topology on the tensor product E ⊗ F which makes the vector space E ⊗ F
in a t.v.s.. Indeed, starting from the topologies on E and F , one can define a
topology on E ⊗ F either relying directly on the seminorms on E and F , or
using an embedding of E ⊗ F in some space related to E and F over which
a natural topology already exists. The first method leads to the so-called
π−topology. The second method may lead instead to a variety of topologies,
the most important of which is the so-called ε−topology that is based on the
isomorphism between E ⊗ F and B(E′σ, F

′
σ) (see Proposition 4.2.9).

4.2.1 π−topology

Let us define the first main topology on E ⊗ F which we will see can be
directly characterized by mean of the seminorms generating the topologies on
the starting locally convex t.v.s. E and F .

Definition 4.2.1 (π−topology).
Given two locally convex t.v.s. E and F , we define the π−topology (or pro-
jective topology) on E ⊗ F to be the strongest locally convex topology on this
vector space for which the canonical mapping E × F → E ⊗ F is continuous.
The space E ⊗ F equipped with the π−topology will be denoted by E ⊗π F .
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4.2. Topologies on the tensor product of locally convex t.v.s.

A basis of neighbourhoods of the origin in E ⊗π F is given by the family:

B := {convb(Uα ⊗ Vβ) : Uα ∈ BE , Vβ ∈ BF } ,

where BE (resp. BF ) is a basis of neighbourhoods of the origin in E (resp.
in F ), Uα ⊗ Vβ := {x⊗ y ∈ E ⊗ F : x ∈ Uα, y ∈ Vβ} and convb(Uα ⊗ Vβ) de-
notes the smallest convex balanced subset of E ⊗ F containing Uα ⊗ Vβ. In
fact, on the one hand, the π−topology is by definition locally convex and so it
has a basis B of convex balanced neighbourhoods of the origin in E⊗F . Then,
as the canonical mapping φ is continuous w.r.t. the π−topology, we have that
for any C ∈ B there exist Uα ∈ BE and Vβ ∈ BF s.t. Uα × Vβ ⊆ φ−1(C).
Hence, Uα ⊗ Vβ = φ(Uα × Vβ) ⊆ C and so convb(Uα ⊗ Vβ) ⊆ convb(C) = C
which yields that the topology generated by Bπ is finer than the π−topology.
On the other hand, the canonical map φ is continuous w.r.t. the topology
generated by Bπ, because for any Uα ∈ BE and Vβ ∈ BF we have that
φ−1(convb(Uα ⊗ Vβ)) ⊇ φ−1(Uα ⊗ Vβ) = Uα × Vβ which is a neighbourhood of
the origin in E × F . Hence, the topology generated by Bπ is coarser than the
π−topology.

The π−topology on E ⊗ F can be described by means of the seminorms
defining the locally convex topologies on E and F . Indeed, we have the fol-
lowing characterization of the π−topology.

Proposition 4.2.2. Let E and F be two locally convex t.v.s. and let P
(resp.Q) be a family of seminorms generating the topology on E (resp.on F ).
The π−topology on E ⊗ F is generated by the family of seminorms

{p⊗ q : p ∈ P, q ∈ Q},

where for any p ∈ P, q ∈ Q, θ ∈ E ⊗ F we define:

(p⊗ q)(θ) := inf{ρ > 0 : θ ∈ ρW}

with

W := convb(Up⊗Vq), Up := {x ∈ E : p(x) ≤ 1}, and Vq := {y ∈ F : q(y) ≤ 1}.

Proof. (Sheet 7, Exercise 3)

The seminorm p⊗ q on E⊗F defined in the previous proposition is called
tensor product of the seminorms p and q (or projective cross seminorm) and
it can be represented in a more practical way that shows even more directly
its relation to the seminorms defining the topologies on E and F .
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4. Tensor products of t.v.s.

Theorem 4.2.3.

a) For any θ ∈ E ⊗ F , we have:

(p⊗q)(θ) := inf

{
r∑

k=1

p(xk)q(yk) : θ =
r∑

k=1

xk ⊗ yk, , xk ∈ E, yk ∈ F, r ∈ N

}
.

b) For all x ∈ E and y ∈ F , (p⊗ q)(x⊗ y) = p(x)q(y).

Proof.
a) As above, we set Up := {x ∈ E : p(x) ≤ 1}, Vq := {y ∈ F : q(y) ≤ 1} and
W := convb(Up ⊗ Vq). Let θ ∈ E ⊗ F . Let us preliminarily observe that the
condition “θ ∈ ρW for some ρ > 0” is equivalent to:

θ =
N∑
k=1

tkxk ⊗ yk, with
N∑
k=1

|tk| ≤ ρ, p(xk) ≤ 1, q(yk) ≤ 1,∀k ∈ {1, . . . , N}.

If we set ξk := tkxk and ηk := yk, then

θ =

N∑
k=1

ξk ⊗ ηk with

N∑
k=1

p(ξk)q(ηk) ≤ ρ.

Then inf {
∑r

k=1 p(xk)q(yk) : θ =
∑r

k=1 xk ⊗ yk, , xk ∈ E, yk ∈ F, r ∈ N} ≤ ρ
and since this is true for any ρ > 0 s.t. θ ∈ ρW then we get:

inf

{
r∑
i=1

p(xi)q(yi) : θ =

r∑
i=1

xi ⊗ yi, , xi ∈ E, yi ∈ F, r ∈ N

}
≤ (p⊗ q)(θ).

Conversely, let us consider an arbitrary representation of θ, i.e.

θ =
N∑
k=1

ξk ⊗ ηk with ξk ∈ E, ηk ∈ F,

and let ρ > 0 s.t.
∑N

k=1 p(ξk)q(ηk) ≤ ρ. Let ε > 0. Define
• I1 := {k ∈ {1, . . . , N} : p(ξk)q(ηk) 6= 0}
• I2 := {k ∈ {1, . . . , N} : p(ξk) 6= 0 and q(ηk) = 0}
• I3 := {k ∈ {1, . . . , N} : p(ξk) = 0 and q(ηk) 6= 0}
• I4 := {k ∈ {1, . . . , N} : p(ξk) = 0 and q(ηk) = 0}

and set
• ∀k ∈ I1, xk := ξk

p(ξk) , yk := ηk
q(ηk) , tk := p(ξk)q(ηk)

• ∀k ∈ I2, xk := ξk
p(ξk) , yk := N

ε p(ξk)ηk, tk := ε
N

• ∀k ∈ I3, xk := N
ε q(ηk)ξk, yk := ηk

q(ηk) , tk := ε
N
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4.2. Topologies on the tensor product of locally convex t.v.s.

• ∀k ∈ I4, xk := N
ε ξk, yk := ηk, tk := ε

N
Then ∀k ∈ {1, . . . , N} we have that p(xk) ≤ 1 and q(yk) ≤ 1. Also we get:

N∑
k=1

tkxk ⊗ yk =
∑
k∈I1

p(ξk)q(ηk)
ξk
p(ξk)

⊗ ηk
q(ηk)

+
∑
k∈I2

ε

N

ξk
p(ξk)

⊗ N

ε
p(ξk)ηk

+
∑
k∈I3

ε

N

N

ε
q(ηk)ξk ⊗

ηk
q(ηk)

+
∑
k∈I4

ε

N

N

ε
ξk ⊗ ηk

=
N∑
k=1

ξk ⊗ ηk = θ

and

N∑
k=1

|tk| =
∑
k∈I1

p(ξk)q(ηk) +
∑

k∈(I2∪I3∪I4)

ε

N

=
∑
k∈I1

p(ξk)q(ηk) + |I2 ∪ I3 ∪ I4|
ε

N

≤
n∑
k=1

p(ξk)q(ηk) + ε ≤ ρ+ ε.

Hence, by our preliminary observation we get that θ ∈ (ρ+ε)W . As this holds
for any ε > 0, we have θ ∈ ρW . Therefore, we obtain that (p ⊗ q)(θ) ≤ ρ
which yields

(p⊗ q)(θ) ≤ inf

{
N∑
k=1

p(ξk)q(ηk) : θ =
N∑
k=1

ξk ⊗ ηk, , ξk ∈ E, ηk ∈ F,N ∈ N

}
.

b) Let x ∈ E and y ∈ F . By using a), we immediately get that

(p⊗ q)(x⊗ y) ≤ p(x)q(y).

Conversely, consider M := span{x} and define L : M → K as L(λx) := λp(x)
for all λ ∈ K. Then clearly L is a linear functional on M and for any m ∈M ,
i.e. m = λx for some λ ∈ K, we have |L(m)| = |λ|p(x) = p(λx) = p(m).
Therefore, Hahn-Banach theorem can be applied and provides that:

∃x′ ∈ E′ s.t. 〈x′, x〉 = p(x) and |〈x′, x1〉| ≤ p(x1), ∀x1 ∈ E. (4.2)

Repeating this reasoning for y we get that:

∃ y′ ∈ F ′ s.t. 〈y′, y〉 = q(y) and |〈y′, y1〉| ≤ q(y1), ∀ y1 ∈ F. (4.3)
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4. Tensor products of t.v.s.

Let us consider now any representation of x⊗y, namely x⊗y =
∑N

k=1 xk⊗yk
with xk ∈ E, yk ∈ F and N ∈ N. Then using the second part of (4.2) and
(4.3) we obtain:

∣∣〈x′ ⊗ y′, x⊗ y〉∣∣ ≤ N∑
k=1

|〈x′, xk〉| · |〈y′, yk〉| ≤
N∑
k=1

p(xk)q(xk).

Since this is true for any representation of x⊗ y, we deduce by a) that:∣∣〈x′ ⊗ y′, x⊗ y〉∣∣ ≤ (p⊗ q)(x⊗ y).

The latter together with the first part of (4.2) and (4.3) gives:

p(x)q(y) = |p(x)|·|q(y)| = |〈x′, x〉|·|〈y′, y〉| =
∣∣〈x′ ⊗ y′, x⊗ y〉∣∣ ≤ (p⊗q)(x⊗y).

Proposition 4.2.4. Let E and F be two locally convex t.v.s.. E ⊗π F is
Hausdorff if and only if E and F are both Hausdorff.

Proof. (Sheet 7, Exercise 4)

Corollary 4.2.5. Let (E, p) and (F, q) be seminormed spaces. Then p⊗ q is
a norm on E ⊗ F if and only if p and q are both norms.

Proof.
Under our assumptions, the π−topology on E ⊗ F is generated by the single
seminorm p ⊗ q. Then, recalling that a seminormed space is normed iff it is
Hausdorff and using Proposition 4.2.4, we get: (E ⊗ F, p ⊗ q) is normed ⇔
E ⊗π F is Hausdorff ⇔ E and F are both Hausdorff ⇔ (E, p) and (F, q) are
both normed.

Definition 4.2.6. Let (E, p) and (F, q) be normed spaces. The normed space
(E ⊗F, p⊗ q) is called the projective tensor product of E and F and p⊗ q is
said to be the corresponding projective tensor norm.

In analogy with the algebraic case (see Theorem 4.1.4-b), we also have a
universal property for the space E ⊗π F .

Proposition 4.2.7.
Let E,F be locally convex spaces. The π−topology on E ⊗π F is the unique
locally convex topology on E ⊗ F such that the following property holds:
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(UP) For every locally convex space G, the algebraic isomorphism between
the space of bilinear mappings from E × F into G and the space of all
linear mappings from E ⊗F into G (given by Theorem 4.1.4-b) induces
an algebraic isomorphism between B(E,F ;G) and L(E ⊗ F ;G), where
B(E,F ;G) denotes the space of all continuous bilinear mappings from
E×F into G and L(E⊗F ;G) the space of all continuous linear mappings
from E ⊗ F into G.

Proof. Let τ be a locally convex topology on E⊗F such that the property (UP)
holds. Then (UP) holds in particular for G = (E ⊗ F, τ). Therefore, since in
the algebraic isomorphism given by Theorem 4.1.4-b) in this case the canonical
mapping φ : E×F → E⊗F corresponds to the identity id : E⊗F → E⊗F ,
we get that φ : E × F → E ⊗τ F has to be continuous.

E × F E ⊗τ F

E ⊗τ F

φ

φ

id

This implies that τ ⊆ π by definition of π−topology. On the other hand, (UP)
also holds for G = (E ⊗ F, π).

E × F E ⊗π F

E ⊗τ F

φ

φ

id

Hence, since by definition of π−topology φ : E × F → E ⊗π F is continuous,
the id : E ⊗τ F → E ⊗π F has to be also continuous. This means that π ⊆ τ ,
which completes the proof.

Corollary 4.2.8. (E ⊗π F )′ ∼= B(E,F ).

Proof. By taking G = K in Proposition 4.2.7, we get the conclusion.

4.2.2 Tensor product t.v.s. and bilinear forms

Before introducing the ε−topology, let us present the above mentioned al-
gebraic isomorphism between the tensor product of two locally convex t.v.s.
and the spaces of bilinear forms on the product of their weak duals. Since
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we are going to deal with topological duals of t.v.s., in this section we will
always assume that E and F are two non-trivial locally convex t.v.s. over
the same field K with non-trivial topological duals. Let G be another t.v.s.
over K and φ : E × F → G a bilinear map. The bilinear map φ is said to be
separately continuous if for all x0 ∈ E and for all y0 ∈ F the following two
linear mappings are continuous:

φx0 : F → G and φy0 : E → G
y → φ(x0, y) x → φ(x, y0).

We denote by B(E,F,G) the linear space of all separately continuous bilinear
maps from E×F into G and by B(E,F,G) its linear subspace of all continuous
bilinear maps from E×F into G. When G = K we write B(E,F ) and B(E,F ),
respectively. Note that B(E,F,G) ⊂ B(E,F,G), i.e. any continuous bilinear
map is separately continuous but the converse does not hold in general.

The following proposition describes an important relation existing between
tensor products and bilinear forms.

Proposition 4.2.9. Let E and F be non-trivial locally convex t.v.s. over K
with non-trivial topological duals. The space B(E′σ, F

′
σ) is a tensor product of

E and F .

Recall that E′σ (resp. F ′σ) denotes the topological dual E′ of E (resp. F ′

of F ) endowed with the weak topology defined in Section 3.2.

Proof.
Let us consider the bilinear mapping:

φ : E × F → B(E′σ, F
′
σ)

(x, y) 7→ φ(x, y) : E′σ × F ′σ → K
(x′, y′) 7→ 〈x′, x〉〈y′, y〉.

(4.4)

We first show that E and F are φ-linearly disjoint. Let r, s ∈ N, x1, . . . , xr
be linearly independent in E and y1, . . . , ys be linearly independent in F . In
their correspondence, select1 x′1, . . . , x

′
r ∈ E′ and y′1, . . . , y

′
s ∈ F ′ such that

〈x′m, xj〉 = δmj , ∀m, j ∈ {1, . . . , r} and 〈y′n, yk〉 = δnk ∀n, k ∈ {1, . . . , s}.

Then we have that:

φ(xj , yk)(x
′
m, y

′
n) = 〈x′m, xj〉〈y′n, yk〉 =

{
1 if m = j and n = k
0 otherwise.

(4.5)

1This can be done using Lemma 3.2.9 together with the assumption that E′ and F ′ are
not trivial.
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This implies that the set {φ(xj , yk) : j = 1, . . . , r, k = 1, . . . , s} consists of
linearly independent elements. Indeed, if there exists λjk ∈ K s.t.

r∑
j=1

s∑
k=1

λjkφ(xj , yk) = 0

then for all m ∈ {1, . . . , r} and all n ∈ {1, . . . , r} we have that:

r∑
j=1

s∑
k=1

λjkφ(xj , yk)(x
′
m, y

′
n) = 0

and so by using (4.5) that all λmn = 0.
We have therefore showed that (LD’) holds and so, by Proposition 4.1.2,

E and F are φ-linearly disjoint. Let us briefly sketch the main steps of the
proof that span(φ(E × F )) = B(E′σ, F

′
σ).

a) Take any ϕ ∈ B(E′σ, F
′
σ). By the continuity of ϕ, it follows that there exist

finite subsets A ⊂ E and B ⊂ F s.t. |ϕ(x′, y′)| ≤ 1, ∀x′ ∈ A◦, ∀ y′ ∈ B◦.
b) Set EA := span(A) and FB := span(B). Since EA and EB are finite

dimensional, their orthogonals (EA)◦ and (FB)◦ have finite codimension
and so

E′×F ′ = (M ′⊕(EA)◦)×(N ′⊕(FB)◦) = (M ′×N ′)⊕((EA)◦×F ′)⊕(E′×(FB)◦),

where M ′ and N ′ finite dimensional subspaces of E′ and F ′, respectively.
c) Using a) and b) one can prove that ϕ vanishes on the direct sum ((EA)◦×

F ′)⊕(E′×(FB)◦) and so that ϕ is completely determined by its restriction
to a finite dimensional subspace M ′ ×N ′ of E′ × F ′.

d) Let r := dim(EA) and s := dim(FB). Then there exist x1, . . . , xr ∈ EA
and y1, . . . , ys ∈ FB s.t. the restriction of ϕ to M ′ ×N ′ is given by

(x′, y′) 7→
r∑
i=1

s∑
j=1

〈x′, xi〉〈y′, yj〉.

Hence, by c), we can conclude that φ ∈ span(φ(E × F )).
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4.2.3 ε−topology

In order to define the ε−topology on E ⊗ F , we need to introduce the so-
called topology of bi-equicontinuous convergence on the space B(E′σ, F

′
σ). To

this aim we first need to study a bit the notion of equicontinuous sets of
mappings between t.v.s..

Definition 4.2.10. Let X and Y be two t.v.s.. A set S of linear mappings
of X into Y is said to be equicontinuous if for any neighbourhood V of the
origin in Y there exists a neighbourhood U of the origin in X such that

∀ f ∈ S, x ∈ U ⇒ f(x) ∈ V

i.e. ∀ f ∈ S, f(U) ⊆ V (or U ⊆ f−1(V )).

The equicontinuity condition can be also rewritten as follows: S is equicon-
tinuous if for any neighbourhood V of the origin in Y there exists a neighbour-
hood U of the origin in X such that

⋃
f∈S f(U) ⊆ V or, equivalently, if for any

neighbourhood V of the origin in Y the set
⋂
f∈S f

−1(V ) is a neighbourhood
of the origin in X.

Note that if S is equicontinuous then each mapping f ∈ S is continuous
but clearly the converse does not hold.

A first property of equicontinuous sets which is clear from the definition
is that any subset of an equicontinuous set is itself equicontinuous. We are
going now to introduce now few more properties of equicontinuous sets of
linear functionals on a t.v.s. which will be useful in the following.

Proposition 4.2.11. A set of continuous linear functionals on a t.v.s. X is
equicontinuous if and only if it is contained in the polar of some neighbourhood
of the origin in X.

Proof.
For any ρ > 0, let us denote by Dρ := {k ∈ K : |k| ≤ ρ}. Let H be an
equicontinuous set of linear forms on X. Then there exists a neighbourhood
U of the origin in X s.t.

⋃
f∈H f(U) ⊆ D1, i.e. ∀f ∈ H, |〈f, x〉| ≤ 1,∀x ∈ U ,

which means exactly that H ⊆ U◦.
Conversely, let U be an arbitrary neighbourhood of the origin in X and

let us consider the polar U◦ := {f ∈ X ′ : supx∈U |〈f, x〉| ≤ 1}. Then for any
ρ > 0

∀ f ∈ U◦, |〈f, y〉| ≤ ρ, ∀ y ∈ ρU,

which is equivalent to ⋃
f∈U◦

f(ρU) ⊆ Dρ.
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This means that U◦ is equicontinuous and so any subset H of U◦ is also
equicontinuous, which yields the conclusion.

Proposition 4.2.12. Let X be a locally convex Hausdorff t.v.s.. Any equicon-
tinuous subset of X ′ is bounded in X ′σ.

Proof. Let H be an equicontinuous subset of X ′. Then, by Proposition 4.2.11,
we get that there exists a neighbourhood U of the origin in X such that
H ⊆ U◦. By Banach-Alaoglu theorem (see Theorem 3.3.3), we know that U◦is
compact in X ′σ and so bounded by Proposition 2.2.4. Hence, by Proposition
2.2.2-4, H is also bounded in X ′σ.

It is also possible to show, but we are not going to prove this here, that
the following holds.

Proposition 4.2.13. Let X be a locally convex Hausdorff t.v.s.. The union
of all equicontinuous subsets of X ′ is dense in X ′σ.

Let us now turn our attention to the space B(X,Y ;Z) of continuous bi-
linear mappings from X × Y to Z, when X,Y and Z are three locally convex
t.v.s.. There is a natural way of introducing a topology on this space which is a
kind of generalization to what we have done when we defined polar topologies
in Chapter 3.

Consider a family Σ (resp. Γ) of bounded subsets of X (resp. Y ) satisfying
the following properties:

(P1) If A1, A2 ∈ Σ, then ∃A3 ∈ Σ s.t. A1 ∪A2 ⊆ A3.

(P2) If A1 ∈ Σ and λ ∈ K, then ∃A2 ∈ Σ s.t. λA1 ⊆ A2.

(resp. satisfying (P1) and (P2) replacing Σ by Γ). The Σ-Γ-topology on
B(X,Y ;Z), or topology of uniform convergence on subsets of the form A×B
with A ∈ Σ and B ∈ Γ, is defined by taking as a basis of neighbourhoods of
the origin in B(X,Y ;Z) the following family:

U := {U(A,B;W ) : A ∈ Σ, B ∈ Γ,W ∈ BZ(o)}

where

U(A,B;W ) := {ϕ ∈ B(X,Y ;Z) : ϕ(A,B) ⊆W}

and BZ(o) is a basis of neighbourhoods of the origin in Z. It is not difficult
to verify that (c.f. [5, Chapter 32]):

a) each U(A,B;W ) is an absorbing, convex, balanced subset of B(X,Y ;Z);

b) the Σ-Γ-topology makes B(X,Y ;Z) into a locally convex t.v.s. (by Theo-
rem 4.1.14 of TVS-I);
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c) If Z is Hausdorff, the union of all subsets in Σ is dense in X and the of
all subsets in Γ is dense in Y , then the Σ-Γ-topology on B(X,Y ;Z) is
Hausdorff.

In particular, given two locally convex Hausdorff t.v.s. E and F , we call bi-
equicontinuous topology on B(E′σ, F

′
σ) the Σ-Γ-topology when Σ is the family

of all equicontinuous subsets of E′ and Γ is the family of all equicontinuous
subsets of F ′. Note that we can make this choice of Σ and Γ, because by
Proposition 4.2.12 all equicontinuous subsets of E′ (resp. F ′) are bounded
in E′σ (resp. F ′σ) and satisfy the properties (P1) and (P2). A basis for the
bi-equicontinuous topology B(E′σ, F

′
σ) is then given by:

U := {U(A,B; ε) : A ∈ Σ, B ∈ Γ, ε > 0}

where

U(A,B; ε) := {ϕ ∈ B(E′σ, F
′
σ) : ϕ(A,B) ⊆ Dε}

= {ϕ ∈ B(E′σ, F
′
σ) : |ϕ(x′, y′)| ≤ ε,∀x′ ∈ A,∀y′ ∈ B}

and Dε := {k ∈ K : |k| ≤ ε}. By using a) and b), we get that B(E′σ, F
′
σ) en-

dowed with the bi-equicontinuous topology is a locally convex t.v.s.. Also, by
using Proposition 4.2.13 together with c), we can prove that the bi-equicontinuous
topology on B(E′σ, F

′
σ) is Hausdorff (as E and F are both assumed to be Haus-

dorff).
We can then use the isomorphism between E⊗F and B(E′σ, F

′
σ) provided

by Proposition 4.2.92 to carry the bi-equicontinuous topology on B(E′σ, F
′
σ)

over E ⊗ε F .

Definition 4.2.14 (ε−topology).
Given two locally convex Hausdorff t.v.s. E and F , we define the ε−topology
on E ⊗ F to the topology carried over (from B(E′σ, F

′
σ) endowed with the bi-

equicontinuous topology, i.e. topology of uniform convergence on the products
of an equicontinuous subset of E′ and an equicontinuous subset of F ′. The
space E ⊗ F equipped with the ε−topology will be denoted by E ⊗ε F .

It is clear then E ⊗ε F is a locally convex Hausdorff t.v.s.. Moreover, we
have that:

Proposition 4.2.15. Given two locally convex Hausdorff t.v.s. E and F ,
the canonical mapping from E × F into E ⊗ε F is continuous. Hence, the
π−topology is finer than the ε−topology on E ⊗ F .

2Recall that non-trivial locally convex Hausdorff t.v.s. have non-trivial topological dual
by Proposition 3.2.7
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Proof.
By definition of ε−topology, it is enough to show that the canonical map-
ping φ from E × F into B(E′σ, F

′
σ) defined in (4.4) is continuous w.r.t. the

bi-equicontinuous topology on B(E′σ, F
′
σ). Let ε > 0, A any equicontinuous

subset of E′ and B any equicontinuous subset of F ′, then by Proposition 4.2.11
we get that there exist a neighbourhood NA of the origin in E and a neigh-
bourhood NB of the origin in F s.t. A ⊆ (NA)◦ and B ⊆ (NB)◦. Hence, we
obtain that

φ−1(U(A,B; ε)) = {(x, y) ∈ E × F : φ(x, y) ∈ U(A,B; ε)}
=

{
(x, y) ∈ E × F : |φ(x, y)(x′, y′)| ≤ ε, ∀x′ ∈ A,∀ y′ ∈ B

}
=

{
(x, y) ∈ E × F : |〈x′, x〉〈y′, y〉| ≤ ε, ∀x′ ∈ A,∀ y′ ∈ B

}
⊇

{
(x, y) ∈ E × F : |〈x′, x〉〈y′, y〉| ≤ ε, ∀x′ ∈ (NA)◦, ∀ y′ ∈ (NB)◦

}
⊇ εNA ×NB,

which proves the continuity of φ as εNA×NB is a neighbourhood of the origin
in E × F .
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