
Universität Konstanz
Fachbereich Mathematik und Statistik
Dr. Maria Infusino
Patrick Michalski

TOPOLOGICAL VECTOR SPACES II–WS 2017/2018

Exercise Sheet 7 - Solution

1) Given two sets X and Y , let E (resp. F ) be the linear space of all functions from X (resp. Y )
to K endowed with the usual addition and multiplication by scalars. For any f ∈ E and
g ∈ F , define:

f ⊗ g : X × Y → K
(x, y) 7→ f(x)g(y).

Show that E ⊗ F := span{f ⊗ g : f ∈ E, g ∈ F} is a tensor product of E and F .

Proof. Define the map φ : E×F → E⊗F as φ(f, g) := f⊗g. Since E⊗F = span{φ(E⊗F )},
to prove that E ⊗F is a tensor product of E and F , we need only to show that φ is bilinear
and that E and F are φ-linearly disjoint.

Let λ ∈ K, f, g ∈ E and h ∈ F . Then, for all (x, y) ∈ X × Y we have

((f + λg)⊗ h)(x, y) = (f + λg)(x)h(y)

= f(x)h(y) + λg(x)h(y)

= (f ⊗ h)(x, y) + λ(g ⊗ h)(x, y),

i.e. φ(f + λg, h) = φ(f, h) + λφ(g, h). This proves the linearity of φ in its first argument.
The linearity in the second argument can be proved analogously.

Let {f1, . . . , fr} ⊆ E and {g1, . . . , gr} ⊆ F such that
∑r

i=1 fi ⊗ gi = 0. If {f1, . . . , fr} is
linearly independent, then

0 =

r∑
i=1

(fi ⊗ gi)(x, y) =
r∑
i=1

fi(x)gi(y) for all x ∈ X, y ∈ Y.

By the linear independence of {f1, . . . , fr}, this yields g1(y) = · · · = gr(y) = 0 for all y ∈ Y .
Hence, we obtain g1 = · · · = gr = 0. If {g1, . . . , gr} is assumed to be linearly independent,
then one can show that f1 = · · · = fr = 0 arguing similarly.

2) Given n,m ∈ N, let X and Y be open subsets of Rn and Rm, respectively. Using the
approximation results in Section 1.5 in the lecture notes, prove that C∞c (X) ⊗ C∞c (Y ) is
sequentially dense in C∞c (X × Y ).



Proof. By Exercise 1) we can form the tensor product C∞c (X)⊗ C∞c (Y ) = span{f ⊗ g : f ∈
C∞c (X), g ∈ C∞c (Y )} with f ⊗ g(x, y) = f(x)g(y) for all x ∈ X, y ∈ Y . By Corollary 1.5.9,
polynomials in R[x, y] with tuples of variables x = (x1, . . . , xn) and y = (y1, . . . , ym) are
sequentially dense in C∞c (X × Y ) w.r.t. the C∞–topology, i.e.

∀ ϕ ∈ C∞c (X × Y ) ∃ (pk)k∈N ⊆ R[x, y] : pk → ϕ as k →∞ (1)

in the C∞–topology. Let ϕ ∈ C∞c (X × Y ) and let K ⊆ X × Y be compact such that
supp(ϕ) ⊆ K and further, let K1 ⊆ X and K2 ⊆ Y be compact such that K ⊆ K1 ×K2.
Let g ∈ C∞c (X) and h ∈ C∞c (Y ) such that g(x) = 1 = h(y) for all x ∈ K1 and all y ∈ K2.
Then

(g ⊗ h)(x, y) = 1 for all (x, y) ∈ supp(ϕ). (2)

Now let us observe that for any p ∈ R[x, y] we have

p(x, y) =
∑
α,β

cα,βx
αyβ =

∑
α,β

cα,β(x
α ⊗ yβ),∀x ∈ X, y ∈ Y,

and so p ∈ C∞c (X)⊗C∞c (Y ). Hence, for all k ∈ N we have that: (g⊗h)pk ∈ C∞c (X)⊗C∞c (Y )

for all k ∈ N. Then (1) implies that (g ⊗ h)pk → (g ⊗ h)ϕ in the C∞–topology as k → ∞
and (2) ensures that (g ⊗ h)ϕ = ϕ, which yields the assertion.

Let E and F be two locally convex t.v.s. over the field K. Denote by E⊗π F the tensor product
E ⊗ F endowed with the π−topology. Prove the following statements.

3) If P (resp. Q) is a family of seminorms generating the topology on E (resp. on F ), then the
π−topology on E ⊗ F is generated by the family

P ⊗Q := {p⊗ q : p ∈ P, q ∈ Q},

where for any p ∈ P, q ∈ Q, θ ∈ E ⊗ F we define:

(p⊗ q)(θ) := inf{ρ > 0 : θ ∈ ρW}

with W := convb(Up ⊗ Vq), Up := {x ∈ E : p(x) ≤ 1} and Vq := {y ∈ F : q(y) ≤ 1}.

Proof. Let us preliminarily show that for any seminorms p on E and q on F we have

Up⊗q = convb(Up ⊗ Uq). (3)

Let p and q be seminorms on E and F respectively and W := convb(Up ⊗ Uq). If θ ∈ Up⊗q,
then (p⊗ q)(θ) ≤ 1, i.e. for any ε > 0 there is ρ > 0 such that θ ∈ ρW and

ρ < (p⊗ q)(θ) + ε ≤ 1 + ε.

Since W is balanced by definition, this yields that θ ∈ ρW ⊆ (1 + ε)W . Hence, by the
arbitrarity of ε, we have θ ∈W . The inclusionW ⊆ Up⊗q directly follows from the definitions.
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W.l.o.g. we may assume that the families P and Q are directed. Therefore, BP = {εUp : p ∈
P, ε > 0} (resp. BQ = {εUq : q ∈ Q, ε > 0}) is a basis of neighbourhoods of the origin in E
(resp. F ) see (4.5) in Section 4.2 in TVS–I. Then

B := {convb(δUp ⊗ εUq) : p ∈ P, q ∈ Q, δ > 0, ε > 0}

is a basis of neighbourhoods of the origin in the π–topology on E ⊗ F .

Now for any p ∈ P, q ∈ Q, δ > 0, ε > 0 we have

convb(δUp ⊗ εUq) = convb(Uδ−1p ⊗ Uε−1q)
(3)
= Uδ−1p⊗ε−1q = U(δε)−1p⊗q = (δε)Up⊗q,

where the equality before the last follows from Theorem 4.2.3. Then

B ≡ {λUp⊗q : p ∈ P, q ∈ Q, λ > 0}.

Since P and Q are directed, we get that P ⊗ Q is also directed because by Theorem 4.2.3
we have that

max{p1 ⊗ q1, p2 ⊗ q2} = (max{p1, p2})⊗ (max{q1, q2})

holds for all p1, p2 ∈ P, q1, q2 ∈ Q. Hence, B is a basis of neighbourhoods of the origin of the
topology on E⊗F induced by the (directed) family P⊗Q and the assertion is immediate.

4) E ⊗π F is Hausdorff if and only if E and F are both Hausdorff.

Proof. Let P (resp. Q) be a family of seminorms generating the topology on E (resp. F )
and let P⊗Q be defined as in Exercise 3). Then by Proposition 4.3.3 from TVS–I the spaces
E,F and E ⊗π F are Hausdorff if and only if P,Q and P ⊗Q are separating.

Assume that E ⊗π F is Hausdorff and so P ⊗Q is separating. Let x ∈ E \ {o}, y ∈ F \ {o}.
Then x⊗ y 6= o ∈ E ⊗ F and hence, there are p ∈ P, q ∈ Q such that

0 6= (p⊗ q)(x⊗ y) = p(x)q(y),

where the last equality is due to Theorem 4.2.3. Thus, p(x) 6= 0 and q(y) 6= 0, which imply
that the families P and Q are both separating and so E and F are both Hausdorff.

Conversely, assume that E and F are Hausdorff. Let o 6= θ ∈ E ⊗ F , say

θ =

r∑
k=1

xk ⊗ yk,

where x1, . . . , xr ∈ E (resp. y1, . . . , yr ∈ F ) can be assumed to be linearly independent. Since
E and F are Hausdorff, by Proposition 3.2.7 (a consequence of the Hahn-Banach Theorem),
there are x′ ∈ E′ and y′ ∈ F ′ such that

〈x′, x1〉 = 〈y′, y1〉 = 1 and 〈x′, xk〉 = 〈y′, yk〉 = 0 for k ≥ 2.
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Then the linear map

θ′ : E ⊗ F → K∑s
l=1 ξl ⊗ ηl 7→

∑r
l=1〈x′, ξl〉〈y′, ηl〉

is continuous for the π–topology and satisfies 〈θ′, θ〉 = 1 by construction. In particular, θ′ is
(p⊗ q)–continuous for some p ∈ P and q ∈ Q, i.e. there is some C > 0 such that

0 < 1 =
∣∣〈θ′, θ〉∣∣ ≤ C(p⊗ q)(θ).

This yields (p⊗ q)(θ) 6= 0. Thus, the family P ⊗Q is separating and the claim follows.
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