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TOPOLOGICAL VECTOR SPACES II-WS 2017/2018

Exercise Sheet 7 - Solution

Given two sets X and Y, let E (resp. F') be the linear space of all functions from X (resp. Y)
to K endowed with the usual addition and multiplication by scalars. For any f € E and
g € F, define:

f®g: XxY — K

(,y) = flx)g(y)
Show that E® F :=span{f ® g : f € E,g € F'} is a tensor product of E and F'.

Proof. Define the map ¢ : ExXF — EQF as ¢(f,g) := f®g. Since EQF = span{p(E®F)},
to prove that £ ® F' is a tensor product of E and F', we need only to show that ¢ is bilinear
and that E and I’ are ¢-linearly disjoint.

Let A €K, f,g € E and h € F. Then, for all (z,y) € X x Y we have

(f+Ag)@h)(zy) = (f+Ag)(x)h(y)
= f(z)h(y) + Ag(x)h(y)
= (foh)(z,y)+ Mg @ h)(z,y),

ie. ¢(f+ Ag,h) = &(f,h) + Ap(g,h). This proves the linearity of ¢ in its first argument.
The linearity in the second argument can be proved analogously.

Let {fi,...,fr} € E and {¢1,...,9-} C F such that E;Zlfi ®g =0 If {fi,....fr} is
linearly independent, then

T

0=> (fi®g)(@y) =Y fix)g(y) forallz € X,y Y.
=1

i=1

By the linear independence of {f1,..., f;}, this yields ¢1(y) =---=g,(y) =0 forall y € Y.
Hence, we obtain g1 = --- = ¢, = 0. If {g1,...,9,} is assumed to be linearly independent,
then one can show that f; =--- = f, = 0 arguing similarly. O

Given n,m € N, let X and Y be open subsets of R™ and R™, respectively. Using the
approximation results in Section 1.5 in the lecture notes, prove that C°(X) ® C°(Y) is
sequentially dense in C°(X x Y).



Proof. By Exercise 1) we can form the tensor product C°(X) ® C°(Y) = span{f ®g: f €
CX(X),g € C(Y)} with f ® g(z,y) = f(x)g(y) for all z € X,y € Y. By Corollary 1.5.9,
polynomials in R[z,y] with tuples of variables z = (z1,...,2,) and y = (y1,...,ym) are

sequentially dense in C2°(X x Y) w.r.t. the C>*~topology, i.e.

VoelCr(X xY)3(pr)keny CR[z,y] : pr — ¢ as k — o0 (1)

in the C®—topology. Let ¢ € C(X xY) and let K C X x Y be compact such that
supp(p) C K and further, let K; C X and Ky C Y be compact such that K C K; x Ko.
Let g € C°(X) and h € C°(Y) such that g(z) =1 = h(y) for all x € K; and all y € K.
Then

(9@ h)(x,y) =1 for all (z,y) € supp(p). (2)

Now let us observe that for any p € R[z, y] we have

pa,y) = capz®y’ = capa®@y’) Ve X yeY,
a’/B 7/8

and so p € C°(X)®CP(Y). Hence, for all k € N we have that: (g®@h)pr € C°(X)®RCX(Y)
for all kK € N. Then implies that (g ® h)pr — (g ® h)p in the C*~topology as k — oo
and ensures that (g ® h)p = ¢, which yields the assertion. O

Let E and F be two locally convex t.v.s. over the field K. Denote by E ®, F' the tensor product
E ® F endowed with the m—topology. Prove the following statements.

3) If P (resp. Q) is a family of seminorms generating the topology on E (resp. on F'), then the
m—topology on F ® F' is generated by the family

PQ:={p®q: peP,q€ Q},
where for any p € P,q € 9,0 € E® I we define:
(p®q)(0) :==inf{p>0: 0 € pW}
with W := convy (U, @ Vy), Up :={z € E:p(z) <1} and V, :={y € F: q(y) < 1}.
Proof. Let us preliminarily show that for any seminorms p on E and g on F' we have
Upgq = convy (U, ®@ Uy). (3)

Let p and ¢ be seminorms on E and F' respectively and W := convy(U, ® Uy). If § € Upgy,
then (p ® ¢)(0) <1, i.e. for any € > 0 there is p > 0 such that § € pWW and

p<(p®@ql)+e<1+e.

Since W is balanced by definition, this yields that § € pW C (1 + ¢)W. Hence, by the
arbitrarity of €, we have # € W. The inclusion W C Up,g, directly follows from the definitions.



4)

W.lo.g. we may assume that the families P and Q are directed. Therefore, Bp = {eU, : p €
P,e > 0} (resp. Bg ={eU, : ¢ € Q,e > 0}) is a basis of neighbourhoods of the origin in £
(resp. F') see (4.5) in Section 4.2 in TVS-I. Then

B := {convy(0U, ® eUy) : p € P,qg € Q,6 > 0,e > 0}
is a basis of neighbourhoods of the origin in the m—topology on F ® F.

Now for any p € P,q € Q,0 > 0, > 0 we have

convy (06U, @ eUy) = COHVb(U(;flp ® U€71q) = Us—1pge—1q = Use)1pzqg = (06)Upsg,

where the equality before the last follows from Theorem 4.2.3. Then
B={Apgq:pe€P,qgc Q,\>0}.

Since P and Q are directed, we get that P ® Q is also directed because by Theorem 4.2.3
we have that

max{p1 ® q1,p2 ® g2} = (max{p1,p2}) ® (max{qi, q2})

holds for all p1,p2 € P,q1,q2 € Q. Hence, B is a basis of neighbourhoods of the origin of the
topology on E® F' induced by the (directed) family P® Q and the assertion is immediate. [J

E ®, F is Hausdorff if and only if F and F' are both Hausdorff.

Proof. Let P (resp. Q) be a family of seminorms generating the topology on E (resp. F')
and let P® Q be defined as in Exercise 3). Then by Proposition 4.3.3 from TVS-I the spaces
E,F and E ®, F are Hausdorff if and only if P, Q and P ® Q are separating.

Assume that F ®, F' is Hausdorff and so P ® Q is separating. Let z € E'\ {o},y € F'\ {o}.
Then z ® y # 0 € E® F and hence, there are p € P,q € Q such that

0# (p®q)(r®y) =p)y),

where the last equality is due to Theorem 4.2.3. Thus, p(z) # 0 and ¢(y) # 0, which imply
that the families P and Q are both separating and so F and F are both Hausdorff.

Conversely, assume that £ and F' are Hausdorff. Let 0 260 € F ® F, say

r
0 = Zxk ®yk7
k=1

where z1,...,x, € E (resp. y1,...,yr € F') can be assumed to be linearly independent. Since
E and F' are Hausdorff, by Proposition 3.2.7 (a consequence of the Hahn-Banach Theorem),
there are 2’ € E’ and 3’ € F’ such that

<$/,l‘1> = <y/7y1> =1 and <1U/,l’k> = <y/’yk> =0 for k > 2.



Then the linear map

. EQF — K
S &@m = Y& &) W, m)

is continuous for the m—topology and satisfies (f’,6) = 1 by construction. In particular, 6’ is
(p ® q)—continuous for some p € P and ¢q € Q, i.e. there is some C' > 0 such that

0<1=[(¢,0)] <Creq) (o).

This yields (p ® ¢)(0) # 0. Thus, the family P ® Q is separating and the claim follows. [



