Universität Konstanz Fachbereich Mathematik und Statistik Dr. Maria Infusino Patrick Michalski

TOPOLOGICAL VECTOR SPACES II–WS 2017/2018

Exercise Sheet 7 - Solution

1) Given two sets X and Y, let E (resp. F) be the linear space of all functions from X (resp. Y) to \mathbb{K} endowed with the usual addition and multiplication by scalars. For any $f \in E$ and $g \in F$, define:

$$\begin{array}{rccc} f \otimes g : & X \times Y & \to & \mathbb{K} \\ & & (x,y) & \mapsto & f(x)g(y). \end{array}$$

Show that $E \otimes F := \operatorname{span} \{ f \otimes g : f \in E, g \in F \}$ is a tensor product of E and F.

Proof. Define the map $\phi : E \times F \to E \otimes F$ as $\phi(f,g) := f \otimes g$. Since $E \otimes F = \text{span}\{\phi(E \otimes F)\}$, to prove that $E \otimes F$ is a tensor product of E and F, we need only to show that ϕ is bilinear and that E and F are ϕ -linearly disjoint.

Let $\lambda \in \mathbb{K}, f, g \in E$ and $h \in F$. Then, for all $(x, y) \in X \times Y$ we have

$$\begin{aligned} ((f+\lambda g)\otimes h)(x,y) &= (f+\lambda g)(x)h(y) \\ &= f(x)h(y) + \lambda g(x)h(y) \\ &= (f\otimes h)(x,y) + \lambda (g\otimes h)(x,y), \end{aligned}$$

i.e. $\phi(f + \lambda g, h) = \phi(f, h) + \lambda \phi(g, h)$. This proves the linearity of ϕ in its first argument. The linearity in the second argument can be proved analogously.

Let $\{f_1, \ldots, f_r\} \subseteq E$ and $\{g_1, \ldots, g_r\} \subseteq F$ such that $\sum_{i=1}^r f_i \otimes g_i = 0$. If $\{f_1, \ldots, f_r\}$ is linearly independent, then

$$0 = \sum_{i=1}^{r} (f_i \otimes g_i)(x, y) = \sum_{i=1}^{r} f_i(x)g_i(y) \text{ for all } x \in X, y \in Y.$$

By the linear independence of $\{f_1, \ldots, f_r\}$, this yields $g_1(y) = \cdots = g_r(y) = 0$ for all $y \in Y$. Hence, we obtain $g_1 = \cdots = g_r = 0$. If $\{g_1, \ldots, g_r\}$ is assumed to be linearly independent, then one can show that $f_1 = \cdots = f_r = 0$ arguing similarly.

2) Given $n, m \in \mathbb{N}$, let X and Y be open subsets of \mathbb{R}^n and \mathbb{R}^m , respectively. Using the approximation results in Section 1.5 in the lecture notes, prove that $\mathcal{C}^{\infty}_{c}(X) \otimes \mathcal{C}^{\infty}_{c}(Y)$ is sequentially dense in $\mathcal{C}^{\infty}_{c}(X \times Y)$.

Proof. By Exercise 1) we can form the tensor product $C_c^{\infty}(X) \otimes C_c^{\infty}(Y) = \operatorname{span}\{f \otimes g : f \in C_c^{\infty}(X), g \in C_c^{\infty}(Y)\}$ with $f \otimes g(x, y) = f(x)g(y)$ for all $x \in X, y \in Y$. By Corollary 1.5.9, polynomials in $\mathbb{R}[\underline{x}, \underline{y}]$ with tuples of variables $\underline{x} = (x_1, \ldots, x_n)$ and $\underline{y} = (y_1, \ldots, y_m)$ are sequentially dense in $C_c^{\infty}(X \times Y)$ w.r.t. the C^{∞} -topology, i.e.

$$\forall \varphi \in \mathcal{C}_c^{\infty}(X \times Y) \exists (p_k)_{k \in \mathbb{N}} \subseteq \mathbb{R}[\underline{x}, \underline{y}] : p_k \to \varphi \text{ as } k \to \infty$$
(1)

in the \mathcal{C}^{∞} -topology. Let $\varphi \in \mathcal{C}^{\infty}_{c}(X \times Y)$ and let $K \subseteq X \times Y$ be compact such that $\operatorname{supp}(\varphi) \subseteq K$ and further, let $K_{1} \subseteq X$ and $K_{2} \subseteq Y$ be compact such that $K \subseteq K_{1} \times K_{2}$. Let $g \in \mathcal{C}^{\infty}_{c}(X)$ and $h \in \mathcal{C}^{\infty}_{c}(Y)$ such that g(x) = 1 = h(y) for all $x \in K_{1}$ and all $y \in K_{2}$. Then

$$(g \otimes h)(x, y) = 1 \text{ for all } (x, y) \in \operatorname{supp}(\varphi).$$
(2)

Now let us observe that for any $p \in \mathbb{R}[\underline{x}, y]$ we have

$$p(\underline{x},\underline{y}) = \sum_{\alpha,\beta} c_{\alpha,\beta} \underline{x}^{\alpha} \underline{y}^{\beta} = \sum_{\alpha,\beta} c_{\alpha,\beta} (\underline{x}^{\alpha} \otimes \underline{y}^{\beta}), \forall \underline{x} \in X, \underline{y} \in Y,$$

and so $p \in \mathcal{C}^{\infty}_{c}(X) \otimes \mathcal{C}^{\infty}_{c}(Y)$. Hence, for all $k \in \mathbb{N}$ we have that: $(g \otimes h)p_{k} \in \mathcal{C}^{\infty}_{c}(X) \otimes \mathcal{C}^{\infty}_{c}(Y)$ for all $k \in \mathbb{N}$. Then (1) implies that $(g \otimes h)p_{k} \to (g \otimes h)\varphi$ in the \mathcal{C}^{∞} -topology as $k \to \infty$ and (2) ensures that $(g \otimes h)\varphi = \varphi$, which yields the assertion. \Box

Let E and F be two locally convex t.v.s. over the field \mathbb{K} . Denote by $E \otimes_{\pi} F$ the tensor product $E \otimes F$ endowed with the π -topology. Prove the following statements.

3) If \mathcal{P} (resp. \mathcal{Q}) is a family of seminorms generating the topology on E (resp. on F), then the π -topology on $E \otimes F$ is generated by the family

$$\mathcal{P}\otimes\mathcal{Q}:=\{p\otimes q:\ p\in\mathcal{P},q\in\mathcal{Q}\},$$

where for any $p \in \mathcal{P}, q \in \mathcal{Q}, \theta \in E \otimes F$ we define:

$$(p \otimes q)(\theta) := \inf\{\rho > 0 : \theta \in \rho W\}$$

with $W := \operatorname{conv}_b(U_p \otimes V_q), U_p := \{x \in E : p(x) \le 1\}$ and $V_q := \{y \in F : q(y) \le 1\}.$

Proof. Let us preliminarily show that for any seminorms p on E and q on F we have

$$U_{p\otimes q} = \operatorname{conv}_b(U_p \otimes U_q). \tag{3}$$

Let p and q be seminorms on E and F respectively and $W := \operatorname{conv}_b(U_p \otimes U_q)$. If $\theta \in U_{p \otimes q}$, then $(p \otimes q)(\theta) \leq 1$, i.e. for any $\varepsilon > 0$ there is $\rho > 0$ such that $\theta \in \rho W$ and

$$\rho < (p \otimes q)(\theta) + \varepsilon \le 1 + \varepsilon$$

Since W is balanced by definition, this yields that $\theta \in \rho W \subseteq (1 + \varepsilon)W$. Hence, by the arbitrarity of ε , we have $\theta \in W$. The inclusion $W \subseteq U_{p \otimes q}$ directly follows from the definitions.

W.l.o.g. we may assume that the families \mathcal{P} and \mathcal{Q} are directed. Therefore, $\mathcal{B}_{\mathcal{P}} = \{\varepsilon U_p : p \in \mathcal{P}, \varepsilon > 0\}$ (resp. $\mathcal{B}_{\mathcal{Q}} = \{\varepsilon U_q : q \in \mathcal{Q}, \varepsilon > 0\}$) is a basis of neighbourhoods of the origin in E (resp. F) see (4.5) in Section 4.2 in TVS–I. Then

$$\mathcal{B} := \{ \operatorname{conv}_b(\delta U_p \otimes \varepsilon U_q) : p \in \mathcal{P}, q \in \mathcal{Q}, \delta > 0, \varepsilon > 0 \}$$

is a basis of neighbourhoods of the origin in the π -topology on $E \otimes F$.

Now for any $p \in \mathcal{P}, q \in Q, \delta > 0, \varepsilon > 0$ we have

$$\operatorname{conv}_b(\delta U_p \otimes \varepsilon U_q) = \operatorname{conv}_b(U_{\delta^{-1}p} \otimes U_{\varepsilon^{-1}q}) \stackrel{(3)}{=} U_{\delta^{-1}p \otimes \varepsilon^{-1}q} = U_{(\delta\varepsilon)^{-1}p \otimes q} = (\delta\varepsilon)U_{p \otimes q},$$

where the equality before the last follows from Theorem 4.2.3. Then

$$\mathcal{B} \equiv \{\lambda U_{p \otimes q} : p \in \mathcal{P}, q \in \mathcal{Q}, \lambda > 0\}.$$

Since \mathcal{P} and \mathcal{Q} are directed, we get that $\mathcal{P} \otimes \mathcal{Q}$ is also directed because by Theorem 4.2.3 we have that

$$\max\{p_1 \otimes q_1, p_2 \otimes q_2\} = (\max\{p_1, p_2\}) \otimes (\max\{q_1, q_2\})$$

holds for all $p_1, p_2 \in \mathcal{P}, q_1, q_2 \in \mathcal{Q}$. Hence, \mathcal{B} is a basis of neighbourhoods of the origin of the topology on $E \otimes F$ induced by the (directed) family $\mathcal{P} \otimes \mathcal{Q}$ and the assertion is immediate. \Box

4) $E \otimes_{\pi} F$ is Hausdorff if and only if E and F are both Hausdorff.

Proof. Let \mathcal{P} (resp. \mathcal{Q}) be a family of seminorms generating the topology on E (resp. F) and let $\mathcal{P} \otimes \mathcal{Q}$ be defined as in Exercise 3). Then by Proposition 4.3.3 from TVS–I the spaces E, F and $E \otimes_{\pi} F$ are Hausdorff if and only if \mathcal{P}, \mathcal{Q} and $\mathcal{P} \otimes \mathcal{Q}$ are separating.

Assume that $E \otimes_{\pi} F$ is Hausdorff and so $\mathcal{P} \otimes \mathcal{Q}$ is separating. Let $x \in E \setminus \{o\}, y \in F \setminus \{o\}$. Then $x \otimes y \neq o \in E \otimes F$ and hence, there are $p \in \mathcal{P}, q \in \mathcal{Q}$ such that

$$0 \neq (p \otimes q)(x \otimes y) = p(x)q(y),$$

where the last equality is due to Theorem 4.2.3. Thus, $p(x) \neq 0$ and $q(y) \neq 0$, which imply that the families \mathcal{P} and \mathcal{Q} are both separating and so E and F are both Hausdorff.

Conversely, assume that E and F are Hausdorff. Let $o \neq \theta \in E \otimes F$, say

$$\theta = \sum_{k=1}^r x_k \otimes y_k,$$

where $x_1, \ldots, x_r \in E$ (resp. $y_1, \ldots, y_r \in F$) can be assumed to be linearly independent. Since E and F are Hausdorff, by Proposition 3.2.7 (a consequence of the Hahn-Banach Theorem), there are $x' \in E'$ and $y' \in F'$ such that

$$\langle x', x_1 \rangle = \langle y', y_1 \rangle = 1$$
 and $\langle x', x_k \rangle = \langle y', y_k \rangle = 0$ for $k \ge 2$.

Then the linear map

$$\begin{array}{rcccc} \theta': & E \otimes F & \to & \mathbb{K} \\ & \sum_{l=1}^{s} \xi_l \otimes \eta_l & \mapsto & \sum_{l=1}^{r} \langle x', \xi_l \rangle \langle y', \eta_l \rangle \end{array}$$

is continuous for the π -topology and satisfies $\langle \theta', \theta \rangle = 1$ by construction. In particular, θ' is $(p \otimes q)$ -continuous for some $p \in \mathcal{P}$ and $q \in \mathcal{Q}$, i.e. there is some C > 0 such that

$$0 < 1 = |\langle \theta', \theta \rangle| \le C(p \otimes q)(\theta).$$

This yields $(p \otimes q)(\theta) \neq 0$. Thus, the family $\mathcal{P} \otimes \mathcal{Q}$ is separating and the claim follows. \Box