Universität Konstanz
Fachbereich Mathematik und Statistik
Dr. Maria Infusino
Patrick Michalski

TOPOLOGICAL VECTOR SPACES II-WS 2017/2018

Exercise Sheet 7 - Solution

1) Given two sets X and Y, let E (resp. F) be the linear space of all functions from X (resp. Y) to \mathbb{K} endowed with the usual addition and multiplication by scalars. For any $f \in E$ and $g \in F$, define:

$$
\begin{array}{rll}
f \otimes g: & X \times Y & \rightarrow \mathbb{K} \\
& (x, y) & \mapsto f(x) g(y)
\end{array}
$$

Show that $E \otimes F:=\operatorname{span}\{f \otimes g: f \in E, g \in F\}$ is a tensor product of E and F.

Proof. Define the $\operatorname{map} \phi: E \times F \rightarrow E \otimes F$ as $\phi(f, g):=f \otimes g$. Since $E \otimes F=\operatorname{span}\{\phi(E \otimes F)\}$, to prove that $E \otimes F$ is a tensor product of E and F, we need only to show that ϕ is bilinear and that E and F are ϕ-linearly disjoint.

Let $\lambda \in \mathbb{K}, f, g \in E$ and $h \in F$. Then, for all $(x, y) \in X \times Y$ we have

$$
\begin{aligned}
((f+\lambda g) \otimes h)(x, y) & =(f+\lambda g)(x) h(y) \\
& =f(x) h(y)+\lambda g(x) h(y) \\
& =(f \otimes h)(x, y)+\lambda(g \otimes h)(x, y)
\end{aligned}
$$

i.e. $\phi(f+\lambda g, h)=\phi(f, h)+\lambda \phi(g, h)$. This proves the linearity of ϕ in its first argument. The linearity in the second argument can be proved analogously.

Let $\left\{f_{1}, \ldots, f_{r}\right\} \subseteq E$ and $\left\{g_{1}, \ldots, g_{r}\right\} \subseteq F$ such that $\sum_{i=1}^{r} f_{i} \otimes g_{i}=0$. If $\left\{f_{1}, \ldots, f_{r}\right\}$ is linearly independent, then

$$
0=\sum_{i=1}^{r}\left(f_{i} \otimes g_{i}\right)(x, y)=\sum_{i=1}^{r} f_{i}(x) g_{i}(y) \text { for all } x \in X, y \in Y
$$

By the linear independence of $\left\{f_{1}, \ldots, f_{r}\right\}$, this yields $g_{1}(y)=\cdots=g_{r}(y)=0$ for all $y \in Y$. Hence, we obtain $g_{1}=\cdots=g_{r}=0$. If $\left\{g_{1}, \ldots, g_{r}\right\}$ is assumed to be linearly independent, then one can show that $f_{1}=\cdots=f_{r}=0$ arguing similarly.
2) Given $n, m \in \mathbb{N}$, let X and Y be open subsets of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. Using the approximation results in Section 1.5 in the lecture notes, prove that $\mathcal{C}_{c}^{\infty}(X) \otimes \mathcal{C}_{c}^{\infty}(Y)$ is sequentially dense in $\mathcal{C}_{c}^{\infty}(X \times Y)$.

Proof. By Exercise 1) we can form the tensor product $\mathcal{C}_{c}^{\infty}(X) \otimes \mathcal{C}_{c}^{\infty}(Y)=\operatorname{span}\{f \otimes g: f \in$ $\left.\mathcal{C}_{c}^{\infty}(X), g \in \mathcal{C}_{c}^{\infty}(Y)\right\}$ with $f \otimes g(x, y)=f(x) g(y)$ for all $x \in X, y \in Y$. By Corollary 1.5.9, polynomials in $\mathbb{R}[\underline{x}, \underline{y}]$ with tuples of variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\underline{y}=\left(y_{1}, \ldots, y_{m}\right)$ are sequentially dense in $\mathcal{C}_{c}^{\infty}(X \times Y)$ w.r.t. the \mathcal{C}^{∞}-topology, i.e.

$$
\begin{equation*}
\forall \varphi \in \mathcal{C}_{c}^{\infty}(X \times Y) \exists\left(p_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}[\underline{x}, \underline{y}]: p_{k} \rightarrow \varphi \text { as } k \rightarrow \infty \tag{1}
\end{equation*}
$$

in the \mathcal{C}^{∞}-topology. Let $\varphi \in \mathcal{C}_{c}^{\infty}(X \times Y)$ and let $K \subseteq X \times Y$ be compact such that $\operatorname{supp}(\varphi) \subseteq K$ and further, let $K_{1} \subseteq X$ and $K_{2} \subseteq Y$ be compact such that $K \subseteq K_{1} \times K_{2}$. Let $g \in \mathcal{C}_{c}^{\infty}(X)$ and $h \in \mathcal{C}_{c}^{\infty}(Y)$ such that $g(x)=1=h(y)$ for all $x \in K_{1}$ and all $y \in K_{2}$. Then

$$
\begin{equation*}
(g \otimes h)(x, y)=1 \text { for all }(x, y) \in \operatorname{supp}(\varphi) \tag{2}
\end{equation*}
$$

Now let us observe that for any $p \in \mathbb{R}[\underline{x}, \underline{y}]$ we have

$$
p(\underline{x}, \underline{y})=\sum_{\alpha, \beta} c_{\alpha, \beta} \underline{x}^{\alpha} \underline{y}^{\beta}=\sum_{\alpha, \beta} c_{\alpha, \beta}\left(\underline{x}^{\alpha} \otimes \underline{y}^{\beta}\right), \forall \underline{x} \in X, \underline{y} \in Y
$$

and so $p \in \mathcal{C}_{c}^{\infty}(X) \otimes \mathcal{C}_{c}^{\infty}(Y)$. Hence, for all $k \in \mathbb{N}$ we have that: $(g \otimes h) p_{k} \in \mathcal{C}_{c}^{\infty}(X) \otimes \mathcal{C}_{c}^{\infty}(Y)$ for all $k \in \mathbb{N}$. Then (1) implies that $(g \otimes h) p_{k} \rightarrow(g \otimes h) \varphi$ in the \mathcal{C}^{∞}-topology as $k \rightarrow \infty$ and (2) ensures that $(g \otimes h) \varphi=\varphi$, which yields the assertion.

Let E and F be two locally convex t.v.s. over the field \mathbb{K}. Denote by $E \otimes_{\pi} F$ the tensor product $E \otimes F$ endowed with the π-topology. Prove the following statements.
3) If \mathcal{P} (resp. \mathcal{Q}) is a family of seminorms generating the topology on E (resp. on F), then the π-topology on $E \otimes F$ is generated by the family

$$
\mathcal{P} \otimes \mathcal{Q}:=\{p \otimes q: p \in \mathcal{P}, q \in \mathcal{Q}\}
$$

where for any $p \in \mathcal{P}, q \in \mathcal{Q}, \theta \in E \otimes F$ we define:

$$
(p \otimes q)(\theta):=\inf \{\rho>0: \theta \in \rho W\}
$$

with $W:=\operatorname{conv}_{b}\left(U_{p} \otimes V_{q}\right), U_{p}:=\{x \in E: p(x) \leq 1\}$ and $V_{q}:=\{y \in F: q(y) \leq 1\}$.

Proof. Let us preliminarily show that for any seminorms p on E and q on F we have

$$
\begin{equation*}
U_{p \otimes q}=\operatorname{conv}_{b}\left(U_{p} \otimes U_{q}\right) \tag{3}
\end{equation*}
$$

Let p and q be seminorms on E and F respectively and $W:=\operatorname{conv}_{b}\left(U_{p} \otimes U_{q}\right)$. If $\theta \in U_{p \otimes q}$, then $(p \otimes q)(\theta) \leq 1$, i.e. for any $\varepsilon>0$ there is $\rho>0$ such that $\theta \in \rho W$ and

$$
\rho<(p \otimes q)(\theta)+\varepsilon \leq 1+\varepsilon
$$

Since W is balanced by definition, this yields that $\theta \in \rho W \subseteq(1+\varepsilon) W$. Hence, by the arbitrarity of ε, we have $\theta \in W$. The inclusion $W \subseteq U_{p \otimes q}$ directly follows from the definitions.
W.l.o.g. we may assume that the families \mathcal{P} and \mathcal{Q} are directed. Therefore, $\mathcal{B}_{\mathcal{P}}=\left\{\varepsilon U_{p}: p \in\right.$ $\mathcal{P}, \varepsilon>0\}\left(\right.$ resp. $\left.\mathcal{B}_{\mathcal{Q}}=\left\{\varepsilon U_{q}: q \in \mathcal{Q}, \varepsilon>0\right\}\right)$ is a basis of neighbourhoods of the origin in E (resp. F) see (4.5) in Section 4.2 in TVS-I. Then

$$
\mathcal{B}:=\left\{\operatorname{conv}_{b}\left(\delta U_{p} \otimes \varepsilon U_{q}\right): p \in \mathcal{P}, q \in \mathcal{Q}, \delta>0, \varepsilon>0\right\}
$$

is a basis of neighbourhoods of the origin in the π-topology on $E \otimes F$.
Now for any $p \in \mathcal{P}, q \in Q, \delta>0, \varepsilon>0$ we have

$$
\operatorname{conv}_{b}\left(\delta U_{p} \otimes \varepsilon U_{q}\right)=\operatorname{conv}_{b}\left(U_{\delta^{-1} p} \otimes U_{\varepsilon^{-1} q}\right) \stackrel{\sqrt[31]{=}}{=} U_{\delta^{-1} p \otimes \varepsilon^{-1} q}=U_{(\delta \varepsilon)^{-1} p \otimes q}=(\delta \varepsilon) U_{p \otimes q}
$$

where the equality before the last follows from Theorem 4.2.3. Then

$$
\mathcal{B} \equiv\left\{\lambda U_{p \otimes q}: p \in \mathcal{P}, q \in \mathcal{Q}, \lambda>0\right\} .
$$

Since \mathcal{P} and \mathcal{Q} are directed, we get that $\mathcal{P} \otimes \mathcal{Q}$ is also directed because by Theorem 4.2.3 we have that

$$
\max \left\{p_{1} \otimes q_{1}, p_{2} \otimes q_{2}\right\}=\left(\max \left\{p_{1}, p_{2}\right\}\right) \otimes\left(\max \left\{q_{1}, q_{2}\right\}\right)
$$

holds for all $p_{1}, p_{2} \in \mathcal{P}, q_{1}, q_{2} \in \mathcal{Q}$. Hence, \mathcal{B} is a basis of neighbourhoods of the origin of the topology on $E \otimes F$ induced by the (directed) family $\mathcal{P} \otimes \mathcal{Q}$ and the assertion is immediate.
4) $E \otimes_{\pi} F$ is Hausdorff if and only if E and F are both Hausdorff.

Proof. Let \mathcal{P} (resp. \mathcal{Q}) be a family of seminorms generating the topology on E (resp. F) and let $\mathcal{P} \otimes \mathcal{Q}$ be defined as in Exercise 3). Then by Proposition 4.3.3 from TVS-I the spaces E, F and $E \otimes_{\pi} F$ are Hausdorff if and only if \mathcal{P}, \mathcal{Q} and $\mathcal{P} \otimes \mathcal{Q}$ are separating.

Assume that $E \otimes_{\pi} F$ is Hausdorff and so $\mathcal{P} \otimes \mathcal{Q}$ is separating. Let $x \in E \backslash\{o\}, y \in F \backslash\{o\}$. Then $x \otimes y \neq o \in E \otimes F$ and hence, there are $p \in \mathcal{P}, q \in \mathcal{Q}$ such that

$$
0 \neq(p \otimes q)(x \otimes y)=p(x) q(y)
$$

where the last equality is due to Theorem 4.2.3. Thus, $p(x) \neq 0$ and $q(y) \neq 0$, which imply that the families \mathcal{P} and \mathcal{Q} are both separating and so E and F are both Hausdorff.

Conversely, assume that E and F are Hausdorff. Let $o \neq \theta \in E \otimes F$, say

$$
\theta=\sum_{k=1}^{r} x_{k} \otimes y_{k}
$$

where $x_{1}, \ldots, x_{r} \in E$ (resp. $y_{1}, \ldots, y_{r} \in F$) can be assumed to be linearly independent. Since E and F are Hausdorff, by Proposition 3.2.7 (a consequence of the Hahn-Banach Theorem), there are $x^{\prime} \in E^{\prime}$ and $y^{\prime} \in F^{\prime}$ such that

$$
\left\langle x^{\prime}, x_{1}\right\rangle=\left\langle y^{\prime}, y_{1}\right\rangle=1 \quad \text { and } \quad\left\langle x^{\prime}, x_{k}\right\rangle=\left\langle y^{\prime}, y_{k}\right\rangle=0 \text { for } k \geq 2 .
$$

Then the linear map

$$
\begin{array}{rll}
\theta^{\prime}: & E \otimes F & \rightarrow \mathbb{K} \\
& \sum_{l=1}^{s} \xi_{l} \otimes \eta_{l} & \mapsto \sum_{l=1}^{r}\left\langle x^{\prime}, \xi_{l}\right\rangle\left\langle y^{\prime}, \eta_{l}\right\rangle
\end{array}
$$

is continuous for the π-topology and satisfies $\left\langle\theta^{\prime}, \theta\right\rangle=1$ by construction. In particular, θ^{\prime} is $(p \otimes q)$-continuous for some $p \in \mathcal{P}$ and $q \in \mathcal{Q}$, i.e. there is some $C>0$ such that

$$
0<1=\left|\left\langle\theta^{\prime}, \theta\right\rangle\right| \leq C(p \otimes q)(\theta)
$$

This yields $(p \otimes q)(\theta) \neq 0$. Thus, the family $\mathcal{P} \otimes \mathcal{Q}$ is separating and the claim follows.

