Universität Konstanz Fachbereich Mathematik und Statistik Dr. Maria Infusino Patrick Michalski

TOPOLOGICAL VECTOR SPACES II–WS 2017/18

Recap Sheet 3

This recap sheet aims to self-assess your progress and to recap some of the definitions and concepts introduced in the previous lectures. You do **not** need to hand in solutions, but please try to answer as many questions as you can since this is a very good training in preparation of your final exam. If you should have any problem, please do not hesitate to attend Maria's office hours on Thursdays 2-3 pm in room F408.

- 1) Recall the definition of projective topology on a vector space. List at least two examples of projective topologies.
- 2) Give a criterion for a projective topology to be Hausdorff. Use this criterion to reprove the fact, that the product of Hausdorff spaces is itself a Hausdorff space.
- 3) Compare the concepts of inductive and projective topology.
- 4) Do you know a vector space which can be equipped with both an inductive and a projective topology? What are the defining sequences?
- **5)** Can you give an example of a \mathcal{C}^{∞}_{c} function on \mathbb{R}^{d} $(d \in \mathbb{N})$?
- 6) Recall the construction of the function f_{ε} introduced in Lemma 1.5.3 for some $f \in \mathcal{C}_{c}(\mathbb{R}^{d})$, where $\varepsilon > 0$ and $d \in \mathbb{N}$. Why is f_{ε} a useful function?
- 7) Recall the definition of dense and sequentially dense. When do both notions coincide?
- 8) Which sequentially dense subspaces of $\mathcal{C}^k(\Omega)$ ($\Omega \subseteq \mathbb{R}^d$ open, $k, d \in \mathbb{N}$) do you know? Which of them are actually dense?
- **9)** Recall the definition of accumulation point of a filter of a topological space. What is the relation between accumulation points and limit points of a filter of a t.v.s.?
- 10) Give a criterion for a Hausdorff space to be compact in terms of accumulation points.