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The primary source for these notes is [7] and [4]. However, often we also
took inspiration from [5] and [6].
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Introduction

The theory of topological vector spaces (TVS), as the name suggests, is a beau-
tiful connection between topological and algebraic structures. It has its origin
in the need of extending beyond the boundaries of Hilbert and Banach space
theory to catch larger classes of spaces and so to better understand their com-
mon features eliminating the contest-specific clutter and exploring instead the
power of the general structure behind them. The first systematic treatment of
these spaces appeared in “Livre V: Espaces vectoriels topologiques (1953)” in
the series “Éléments de mathématique” by Nicolas Bourbaki. Actually, there
was no person called Nicolas Bourbaki but this was just a pseudonym under
which a group of mathematicians wrote the above mentioned series of books
between 1935 and 1983 with the aim of reformulating the whole mathematics
on an extremely formal, rigourous and general basis grounded on set the-
ory. The work of the Bourbaki group (o�cially known as the “Association of
collaborators of Nicolas Bourbaki”) greatly influenced the mathematic world
and led to the discovery of concepts and terminologies still used today (e.g.
the symbol ;, the notions of injective, surjective, bijective, etc.) The Bour-
baki group included several mathematicians connected to the École Normale
Supérieure in Paris such as Henri Cartan, Jean Coulomb, Jean Dieudonné,
André Weil, Laurent Schwartz, Jean-Pierre Serre, Alexander Grothendieck.
The latter is surely the name which is most associated to the theory of TVS.
Of course great contributions to this theory were already given before him
(e.g. the Banach and Hilbert spaces are examples of TVS), but Alexander
Grothendieck was engaged in a completely general approach to the study of
these spaces between 1950 and 1955 (see e.g. [1, 2]) and collected some among
the deepest results on TVS in his Phd thesis [3] written under the supervi-
sion of Jean Dieudonné and Laurent Schwartz. After his dissertation he said:
“There is nothing more to do, the subject is dead”. Despite this sentence
come out of the mouth of a genius, the theory of TVS is far from being dead.
Many aspects are in fact still unknown and the theory lively interacts with
several interesting problems which are still currently unsolved!
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Chapter 1

Preliminaries

1.1 Topological spaces

1.1.1 The notion of topological space

The topology on a set X is usually defined by specifying its open subsets of X.
However, in dealing with topological vector spaces, it is often more convenient
to define a topology by specifying what the neighbourhoods of each point are.

Definition 1.1.1. A topology ⌧ on a set X is a family of subsets of X which
satisfies the following conditions:
(O1) the empty set ; and the whole X are both in ⌧

(O2) ⌧ is closed under finite intersections
(O3) ⌧ is closed under arbitrary unions
The pair (X, ⌧) is called a topological space.

The sets O 2 ⌧ are called open sets of X and their complements C = X \O
are called closed sets of X. A subset of X may be neither closed nor open,
either closed or open, or both. A set that is both closed and open is called a
clopen set.

Definition 1.1.2. Let (X, ⌧) be a topological space.
• A subfamily B of ⌧ is called a basis if every open set can be written as

a union (possibly empty) of sets in B.
• A subfamily X of ⌧ is called a subbasis if the finite intersections of its

sets form a basis, i.e. every open set can be written as a union of finite
intersections of sets in X .

Therefore, a topology ⌧ on X is completely determined by a basis or a
subbasis.
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1. Preliminaries

Examples 1.1.3.

a) The family B := {(a, b) : a, b 2 Q with a < b} is a basis of the euclidean
(or standard) topology on R.

b) The collection S of all semi-infinite intervals of the real line of the forms
(�1, a) and (a,+1), where a 2 R is not a basis for any topology on R.
To show this, suppose it were. Then, for example, (�1, 1) and (0,1)
would be in the topology generated by S, being unions of a single basis
element, and so their intersection (0, 1) would be by the axiom (O2) of
topology. But (0, 1) clearly cannot be written as a union of elements in S.
However, S is a subbasis of the euclidean topology on R.

Proposition 1.1.4. Let X be a set and let B be a collection of subsets of X.
B is a basis for a topology ⌧ on X i↵ the following hold:

1. B covers X, i.e. 8x 2 X, 9B 2 B s.t. x 2 B.
2. If x 2 B1\B2 for some B1, B2 2 B, then 9B3 2 B s.t. x 2 B3 ✓ B1\B2.

Proof. (Recap Sheet 1)

Definition 1.1.5. Let (X, ⌧) be a topological space and x 2 X. A subset U
of X is called a neighbourhood of x if it contains an open set containing the
point x, i.e. 9O 2 ⌧ s.t. x 2 O ✓ U . The family of all neighbourhoods of a
point x 2 X is denoted by F

⌧

(x). (In the following, we will omit the subscript
whenever there is no ambiguity on the chosen topology.)

In order to define a topology on a set by the family of neighbourhoods of
each of its points, it is convenient to introduce the notion of filter. Note that
the notion of filter is given on a set which does not need to carry any other
structure. Thus this notion is perfectly independent of the topology.

Definition 1.1.6. A filter on a set X is a family F of subsets of X which
fulfills the following conditions:
(F1) the empty set ; does not belong to F
(F2) F is closed under finite intersections
(F3) any subset of X containing a set in F belongs to F

Definition 1.1.7. A family B of non-empty subsets of a set X is a basis of
a filter F on X if

1. B ✓ F
2. 8A 2 F , 9B 2 B s.t. B ✓ A

Examples 1.1.8.

a) The family G of all subsets of a set X containing a fixed non-empty sub-
set S is a filter and B = {S} is its basis. G is called the principal filter
generated by S.
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1.1. Topological spaces

b) Given a topological space X and x 2 X, the family F(x) is a filter.
c) Let S := {x

n

}
n2N be a sequence of points in a set X. Then the family

F
S

:= {A ⇢ X : |S \ A| < 1} is a filter and it is known as the filter
associated to S. For each m 2 N, set S

m

:= {x
n

2 S : n � m}. Then
B := {S

m

: m 2 N} is a basis for F
S

.

Proof. (Recap Sheet 1).

Proposition 1.1.9. A family B of non-empty subsets of a set X is a basis of
a filter on X if and only

8 B1, B2 2 B, 9B3 2 B s.t. B3 ✓ B1 \B2. (1.1)

Proof.
) Suppose that B is a basis of a filter F on X and let B1, B2 2 B. Then, by
Definition 1.1.7-1 and (F2), we get B1, B2 2 F and so B1 \ B2 2 F . Hence,
by Definition 1.1.7-2, there exists B3 2 B s.t. B3 ✓ B1 \B2, i.e. (1.1) holds.
( Suppose that B fulfills (1.1). Then

FB := {A ✓ X : A ◆ B for some B 2 B} (1.2)

is a filter on X (often called the filter generated by B). In fact, (F1) and (F3)
both directly follow from the definition of FB and (F2) holds, because for any
A1, A2 2 FB there exist B1, B2 2 B such that B1 ✓ A1 and B2 ✓ A2, and
hence (1.1) provides the existence of B3 2 B such that B3 ✓ B1\B2 ✓ A1\A2,
which yields A1 \ A2 2 FB. It is totally clear from the definition of FB that
Definition 1.1.7 is fulfilled and so that B is basis for the filter FB.

Theorem 1.1.10. Given a topological space X and a point x 2 X, the filter
of neighbourhoods F(x) satisfies the following properties.
(N1) For any A 2 F(x), x 2 A.
(N2) For any A 2 F(x), 9B 2 F(x): 8 y 2 B, A 2 F(y).
Viceversa, if for each point x in a set X we are given a filter F

x

fulfilling the
properties (N1) and (N2) then there exists a unique topology ⌧ s.t. for each
x 2 X, F

x

is the family of neighbourhoods of x, i.e. F
x

⌘ F(x), 8x 2 X.

This means that a topology on a set is uniquely determined by the family
of neighbourhoods of each of its points.

Proof.
) Let (X, ⌧) be a topological space, x 2 X and F(x) the filter of neighbour-
hoods of x. Then (N1) trivially holds by definition of neighbourhood of x. To
show (N2), let us take A 2 F(x). By the definition of neighbourhood of x,
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1. Preliminaries

we know that there exists B 2 ⌧ s.t. x 2 B ✓ A and also that B 2 F(x).
Moreover, since for any y 2 B we have that y 2 B ✓ A and B 2 ⌧ , we can
conclude that A 2 F(y).
( Suppose that for any x in a set X we have a filter F

x

fulfilling (N1) and
(N2). We aim to show that ⌧ := {O ✓ X : 8 x 2 O, O 2 F

x

}1 is the unique
topology such that F

x

⌘ F
⌧

(x), 8x 2 X.
Let us first prove that ⌧ is a topology.

• ; 2 ⌧ by definition of ⌧ . Also X 2 ⌧ , because for any x 2 X and any
A 2 F

x

we clearly have X ◆ A and so by (F3) X 2 F
x

.
• For any O1, O2 2 ⌧ , either O1 \O2 = ; 2 ⌧ or there exists x 2 O1 \O2.
In the latter case, by definition of ⌧ , we have that O1 2 F

x

and O2 2 F
x

,
which imply by (F2) that O1 \O2 2 F

x

and so O1 \O2 2 ⌧ .
• Let U be an arbitrary union of sets U

i

2 ⌧ . If U is empty then U 2 ⌧ ,
otherwise let x 2 U . Then there exists at least one i s.t. x 2 U

i

and so
U
i

2 F
x

because U
i

2 ⌧ . But U ◆ U
i

, then by (F3) we get that U 2 F
x

and so U 2 ⌧ .
It remains to show that ⌧ on X is actually s.t. F

x

⌘ F
⌧

(x), 8x 2 X.
• Any U 2 F

⌧

(x) is a neighbourhood of x and so there exists O 2 ⌧ s.t.
x 2 O ✓ U . Then, by definition of ⌧ , we have O 2 F

x

and so (F3)
implies that U 2 F

x

. Hence, F
⌧

(x) ✓ F
x

.
• Let U 2 F

x

and set W := {y 2 U : U 2 F
y

} ✓ U . Since x 2 U by
(N1), we also have x 2 W . Moreover, if y 2 W then U 2 F

y

and so
(N2) implies that there exists V 2 F

y

s.t. 8z 2 V we have U 2 F
z

. This
means that z 2 W and so V ✓ W . Then W 2 F

y

by (F3). Hence, we
have showed that if y 2 W then W 2 F

y

, i.e. W 2 ⌧ . Summing up, we
have just constructed an open set W s.t. x 2 W ✓ U , i.e. U 2 F

⌧

(x),
and so F

x

✓ F
⌧

(x).
Note that the non-empty open subsets of any other topology ⌧ 0 on X such
that F

x

⌘ F
⌧

0(x), 8x 2 X must be identical to the subsets O of X for which
O 2 F

x

whenever x 2 O. Hence, ⌧ 0 ⌘ ⌧ .

Remark 1.1.11. The previous proof in particular shows that a subset is open
if and only if it is a neighbourhood of each of its points.

Definition 1.1.12. Given a topological space X, a basis B(x) of the filter of
neighbourhoods F(x) of x 2 X is called a basis of neighbourhoods of x, i.e.
B(x) is a subset of F(x) s.t. every set in F(x) contains one in B(x). The
elements of B(x) are called basic neighbourhoods of x.

1
Note that ; 2 ⌧ since a statement that asserts that all members of the empty set have

a certain property is always true (vacuous truth).
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Example 1.1.13. The open sets of a topological space other than the empty
set always form a basis of neighbourhoods.

Theorem 1.1.14. Given a topological space X and a point x 2 X, a basis of
open neighbourhoods B(x) satisfies the following properties.
(B1) For any U 2 B(x), x 2 U .
(B2) For any U1, U2 2 B(x), 9U3 2 B(x) s.t. U3 ✓ U1 \ U2.
(B3) If y 2 U 2 B(x), then 9W 2 B(y) s.t. W ✓ U .
Viceversa, if for each point x in a set X we are given a collection of subsets
B
x

fulfilling the properties (B1), (B2) and (B3) then there exists a unique
topology ⌧ s.t. for each x 2 X, B

x

is a basis of neighbourhoods of x, i.e.
B
x

⌘ B(x), 8x 2 X.

Proof. The proof easily follows by using Theorem 1.1.10.

The previous theorem gives a further way of introducing a topology on a
set. Indeed, starting from a basis of neighbourhoods of X, we can define a
topology on X by setting that a set is open i↵ whenever it contains a point
it also contains a basic neighbourhood of the point. Thus a topology on a set
X is uniquely determined by a basis of neighbourhoods of each of its points.
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