
4.2. Connection to seminorms

Proposition 4.2.11. Let X be a t.v.s. and p a seminorm on X. Then the
following conditions are equivalent:

a) the open unit semiball Ů
p

of p is an open set.

b) p is continuous at the origin.

c) the closed unit semiball U
p

of p is a barrelled neighbourhood of the origin.

d) p is continuous at every point.

Proof.
a) ) b) Suppose that Ů

p

is open in the topology on X. Then for any " > 0
we have that p�1([0, "[) = {x 2 X : p(x) < "} = "Ů

p

is an open neighbourhood
of the origin in X. This is enough to conclude that p : X ! R+ is continuous
at the origin.

b) ) c) Suppose that p is continuous at the origin, then U
p

= p�1([0, 1]) is
a closed neighbourhood of the origin. Since U

p

is also absorbing and absolutely
convex by Proposition 4.2.10-a), U

p

is a barrel.
c) ) d) Assume that c) holds and fix o 6= x 2 X. Using Proposition 4.2.10

and Proposition 4.2.3, we get that for any " > 0: p�1([�"+ p(x), p(x) + "]) =
{y 2 X : |p(y) � p(x)|  "} ◆ {y 2 X : p(y � x)  "} = x + "U

p

, which
is a closed neighbourhood of x since X is a t.v.s. and by the assumption c).
Hence, p is continuous at x.

d) ) a) If p is continuous on X then a) holds because the preimage of an
open set under a continuous function is open and Ů

p

= p�1([0, 1[).

With such properties in our hands we are able to give a criterion to compare
two locally convex topologies on the same space using their generating families
of seminorms.

Theorem 4.2.12 (Comparison of l.c. topologies).
Let P = {p

i

}
i2I and Q = {q

j

}
j2J be two families of seminorms on the vector

space X inducing respectively the topologies ⌧P and ⌧Q, which both make X
into a locally convex t.v.s.. Then ⌧P is finer than ⌧Q (i.e. ⌧Q ✓ ⌧P) i↵

8q 2 Q 9n 2 N, i1, . . . , in 2 I, C > 0 s.t. Cq(x)  max
k=1,...,n

p
i

k

(x), 8x 2 X.

(4.2)

Proof.
Let us first recall that, by Theorem 4.2.9, we have that

BP :=
n

n

\

k=1

"Ů
p

i

k

: i1, . . . , in 2 I, n 2 N, " > 0, " 2 R
o
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4. Locally convex topological vector spaces

and

BQ :=
n

n

\

k=1

"Ů
q

j

k

: j1, . . . , jn 2 J, n 2 N, " > 0, " 2 R
o

.

are respectively bases of neighbourhoods of the origin for ⌧P and ⌧Q.
By using Proposition 4.2.10, the condition (4.2) can be rewritten as

8q 2 Q, 9n 2 N, i1, . . . , in 2 I, C > 0 s.t. C
n

\

k=1

Ů
p

i

k

✓ Ů
q

.

which means that

8q 2 Q, 9 B
q

2 BP s.t. B
q

✓ Ů
q

. (4.3)

since C
T

n

k=1 Ůp

i

k

2 BP .

Condition (4.3) means that for any q 2 Q the set Ů
q

2 ⌧P , which by
Proposition 4.2.11 is equivalent to say that q is continuous w.r.t. ⌧P . By
definition of ⌧Q, this gives that ⌧Q ✓ ⌧P . 1

This theorem allows us to easily see that the topology induced by a family
of seminorms on a vector space does not change if we close the family under
taking the maximum of finitely many of its elements. Indeed, the following
result holds.

Proposition 4.2.13. Let P := {p
i

}
i2I be a family of seminorms on a vector

space X and Q :=
�

max
i2B

p
i

: ; 6= B ✓ I with B finite
 

. Then Q is a family

of seminorms and ⌧P = ⌧Q, where ⌧P and ⌧Q denote the topology induced on
X by P and Q, respectively.

Proof.
First of all let us note that, by Proposition 4.2.10, Q is a family of seminorms.
On the one hand, since P ✓ Q, by definition of induced topology we have
⌧P ✓ ⌧Q. On the other hand, for any q 2 Q we have q = max

i2B
p
i

for some

; 6= B ✓ I finite. Then (4.2) is fulfilled for n = |B| (where |B| denotes the
cardinality of the finite set B), i1, . . . , in being the n elements of B and for
any 0 < C  1. Hence, by Theorem 4.2.12, ⌧Q ✓ ⌧P .

1Alternate proof without using Prop 4.2.11 (Exercise Sheet 5).
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4.3. Hausdor↵ locally convex t.v.s

This fact can be used to show the following very useful property of locally
convex t.v.s.

Proposition 4.2.14. The topology of a locally convex t.v.s. can be always
induced by a directed family of seminorms.

Definition 4.2.15. A family Q := {q
j

}
j2J of seminorms on a vector space

X is said to be directed if

8 j1, j2 2 J, 9 j 2 J,C > 0 s.t. Cq
j

(x) � max{q
j1(x), qj2(x)}, 8x 2 X (4.4)

or equivalently by induction if

8 n 2 N, j1, . . . , jn 2 J, 9 j 2 J,C > 0 s.t. Cq
j

(x) � max
k=1,...,n

q
j

k

(x), 8x 2 X.

Proof. of Proposition 4.2.14
Let (X, ⌧) be a locally convex t.v.s.. By Theorem 4.2.9, we have that there
exists a family of seminorms P := {p

i

}
i2I on X s.t. ⌧ = ⌧P . Let us define Q

as the collection obtained by forming the maximum of finitely many elements
of P, i.e. Q :=

�

max
i2B

p
i

: ; 6= B ✓ I with B finite
 

. By Proposition 4.2.13,

Q is a family of seminorms and we have that ⌧P = ⌧Q.
Let q, q0 2 Q, i.e. q := max

i2B
p
i

and q0 := max
i2B0

p
i

for some non-empty finite

subsets B,B0 of I. Let us define q00 := max
i2B[B0

p
i

. Then q00 2 Q and for any

C � 1 we have that (4.4) is satisfied, because we get that for any x 2 X

Cq00(x) = Cmax

⇢

max
i2B

p
i

(x),max
i2B0

p
i

(x)

�

� max{q(x), q0(x)}.

Hence, Q is directed.

It is possible to show (Exercise Sheet 5) that a basis of neighbourhoods of
the origin for the l.c. topology ⌧Q induced by a directed family of seminorms
Q is given by:

B
d

:= {rŮ
q

: q 2 Q, r > 0}. (4.5)

4.3 Hausdor↵ locally convex t.v.s

In Section 2.2, we gave some characterization of Hausdor↵ t.v.s. which can
of course be applied to establish whether a locally convex t.v.s. is Hausdor↵
or not. However, in this section we aim to provide necessary and su�cient
conditions bearing only on the family of seminorms generating a locally convex
topology for being a Hausdor↵ topology.
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4. Locally convex topological vector spaces

Definition 4.3.1.
A family of seminorms P := {p

i

}
i2I on a vector space X is said to be sepa-

rating if
8x 2 X \ {o}, 9 i 2 I s.t. p

i

(x) 6= 0. (4.6)

Note that the separation condition (4.6) is equivalent to

p
i

(x) = 0, 8i 2 I ) x = o

which by using Proposition 4.2.10 can be rewritten as

\

i2I,c>0

cŮ
p

i

= {o},

since p
i

(x) = 0 is equivalent to say that p
i

(x) < c, for all c > 0.

It is clear that if any of the elements in a family of seminorms is actually
a norm, then the the family is separating.

Lemma 4.3.2. Let ⌧P be the topology induced by a separating family of semi-
norms P := (p

i

)
i2I on a vector space X. Then ⌧P is a Hausdor↵ topology.

Proof. Let x, y 2 X be such that x 6= y. Since P is separating, we have
that 9 i 2 I with p

i

(x � y) 6= 0. Then 9 ✏ > 0 s.t. p
i

(x � y) = 2✏. Let
us define V

x

:= {u 2 X | p
i

(x � u) < ✏} and V
y

:= {u 2 X | p
i

(y � u) <
✏}. By Proposition 4.2.10, we get that V

x

= x + "Ů
p

i

and V
y

= y + "Ů
p

i

.
Since Theorem 4.2.9 guarantees that (X, ⌧P) is a t.v.s. where the set "Ů

p

i

is a neighbourhood of the origin, V
x

and V
y

are neighbourhoods of x and y,
respectively. They are clearly disjoint. Indeed, if there would exist u 2 V

x

\V
y

then
p
i

(x� y) = p
i

(x� u+ u� y)  p
i

(x� u) + p
i

(u� y) < 2"

which is a contradiction.

Proposition 4.3.3. A locally convex t.v.s. is Hausdor↵ if and only if its
topology can be induced by a separating family of seminorms.

Proof. Let (X, ⌧) be a locally convex t.v.s.. Then we know that there always
exists a basis N of neighbourhoods of the origin in X consisting of open
absorbing absolutely convex sets. Moreover, in Theorem 4.2.9, we have showed
that ⌧ = ⌧P where P is the family of seminorms given by the Minkowski
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4.3. Hausdor↵ locally convex t.v.s

functionals of sets in N , i.e. P := {p
N

: N 2 N}, and also that for each
N 2 N we have N = Ů

p

N

.
Suppose that (X, ⌧) is also Hausdor↵. Then Proposition 2.2.3 ensures that

for any x 2 X with x 6= o there exists a neighbourhood V of the origin in X
s.t. x /2 V . This implies that there exists at least N 2 N s.t. x /2 N 2. Hence,
x /2 N = Ů

p

N

means that p
N

(x) � 1 and so p
N

(x) 6= 0, i.e. P is separating.
Conversely, if ⌧ is induced by a separating family of seminorms P, i.e.

⌧ = ⌧P , then Lemma 4.3.2 ensures that X is Hausdor↵.

Examples 4.3.4.

1. Every normed space is a Hausdor↵ locally convex space, since every norm
is a seminorm satisfying the separation property. Therefore, every Ba-
nach space is a complete Hausdor↵ locally convex space.

2. Every family of seminorms on a vector space containing a norm induces
a Hausdor↵ locally convex topology.

3. Given an open subset ⌦ of Rd with the euclidean topology, the space C(⌦)
of real valued continuous functions on ⌦ with the so-called topology of
uniform convergence on compact sets is a locally convex t.v.s.. This
topology is defined by the family P of all the seminorms on C(⌦) given
by p

K

(f) := max
x2K

|f(x)|, 8K ⇢ ⌦ compact.

Moreover, (C(⌦), ⌧P) is Hausdor↵, because the family P is clearly sepa-
rating. In fact, if p

K

(f) = 0, 8K compact subsets of ⌦ then in particular
p{x}(f) = |f(x)| = 0 8x 2 ⌦, which implies f ⌘ 0 on ⌦.

More generally, for any X locally compact we have that C(X) with the
topology of uniform convergence on compact subsets of X is a locally
convex Hausdor↵ t.v.s.

To introduce two other examples of l.c. Hausdor↵ t.v.s. we need to recall
some standard general notations. Let N0 be the set of all non-negative integers.
For any x = (x1, . . . , x

d

) 2 Rd and ↵ = (↵1, . . . ,↵
d

) 2 Nd

0 one defines x↵ :=
x↵1
1 · · ·x↵d

d

. For any � 2 Nd

0, the symbol D� denotes the partial derivative of

order |�| where |�| :=
P

d

i=1 �i, i.e.

D� :=
@|�|

@x�1
1 · · · @x�d

d

=
@�1

@x�1
1

· · · @�

d

@x�d

d

.

2Since N is a basis of neighbourhoods of the origin, 9 M 2 N s.t. M ✓ V . If x would
belong to all elements of the basis then in particular it would be x 2 M and so also x 2 V ,
contradiction.
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4. Locally convex topological vector spaces

Examples 4.3.5.

1. Let ⌦ ✓ Rd open in the euclidean topology. For any k 2 N0, let Ck(⌦) be
the set of all real valued k�times continuously di↵erentiable functions
on ⌦, i.e. all the derivatives of f of order  k exist (at every point of ⌦)
and are continuous functions in ⌦. Clearly, when k = 0 we get the set
C(⌦) of all real valued continuous functions on ⌦ and when k = 1 we
get the so-called set of all infinitely di↵erentiable functions or smooth
functions on ⌦. For any k 2 N0, Ck(⌦) (with pointwise addition and
scalar multiplication) is a vector space over R. The topology given by
the following family of seminorms on Ck(⌦):

p
m,K

(f) := sup
�2Nd0
|�|m

sup
x2K

�

�

�

(D�f)(x)
�

�

�

, 8K ✓ ⌦ compact, 8m 2 {0, 1, . . . , k},

makes Ck(⌦) into a l.c. Hausdor↵ t.v.s..
2. The Schwartz space or space of rapidly decreasing functions on Rd is

defined as the set S(Rd) of all real-valued functions which are defined
and infinitely di↵erentiable on Rd and which have the additional property
(regulating their growth at infinity) that all their derivatives tend to zero
at infinity faster than any inverse power of x, i.e.

S(Rd) :=

(

f 2 C1(Rd) : sup
x2Rd

�

�

�

x↵D�f(x)
�

�

�

< 1, 8↵,� 2 Nd

0

)

.

(For example, any smooth function f with compact support in Rd is
in S(Rd), since any derivative of f is continuous and supported on a
compact subset of Rd, so x↵(D�f(x)) has a maximum in Rd by the
extreme value theorem.)

The Schwartz space S(Rd) is a vector space over R and the topology
given by the family Q of seminorms on S(Rd):

q
↵,�

(f) := sup
x2Rd

�

�

�

x↵D�f(x)
�

�

�

, 8↵,� 2 Nd

0

makes S(Rd) into a l.c. Hausdor↵ t.v.s. (see Exercise Sheet 5).

Note that S(Rd) is a linear subspace of C1(Rd), but its topology ⌧Q on
S(Rd) is finer than the subspace topology induced on it by C1(Rd) (see
Exercise Sheet 5).
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4.4. The finest locally convex topology

4.4 The finest locally convex topology

In the previous sections we have seen how to generate topologies on a vector
space which makes it into a locally convex t.v.s.. Among all of them, there is
the finest one (i.e. the one having the largest number of open sets) which is
usually called the finest locally convex topology on the given vector space.

Proposition 4.4.1. The finest locally convex topology on a vector space X is
the topology induced by the family of all seminorms on X and it is a Hausdor↵
topology.
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