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In the previous sections we have seen how to generate topologies on a vector
space which makes it into a locally convex t.v.s.. Among all of them, there is
the finest one (i.e. the one having the largest number of open sets) which is
usually called the finest locally convex topology on the given vector space.

Proposition 4.4.1. The finest locally convex topology on a non-trivial vector
space X is the topology induced by the family of all seminorms on X and it is
a Hausdor↵ topology.

Proof.
Let us denote by S the family of all seminorms on the vector space X. By
Theorem 4.2.9, we know that the topology ⌧S induced by S makes X into a
locally convex t.v.s. We claim that ⌧S is the finest locally convex topology. In
fact, if there was a finer locally convex topology ⌧ (i.e. if ⌧S ✓ ⌧ with (X, ⌧)
locally convex t.v.s.) then Theorem 4.2.9 would give that ⌧ is also induced by
a family P of seminorms. But surely P ✓ S and so ⌧ = ⌧P ✓ ⌧S by definition
of induced topology. Hence, ⌧ = ⌧S .

It remains to show that (X, ⌧S) is Hausdor↵. By Lemma 4.3.2, it is enough
to prove that S is separating. Let x 2 X \ {o} and let B be an algebraic basis
of the vector space X containing x (its existence is guaranteed by Zorn’s
lemma). Define the linear functional L : X ! K as L(x) = 1 and L(y) = 0
for all y 2 B \{x}. Then it is easy to see that s := |L| is a seminorm, so s 2 S
and s(x) 6= 0, which proves that S is separating.3

An alternative way of describing the finest locally convex topology on a
vector space without using seminorms is the following:

Proposition 4.4.2. The collection of all absorbing absolutely convex sets of
a non-trivial vector space X is a basis of neighbourhoods of the origin for the
finest locally convex topology on X.

Proof. Let ⌧
max

be the finest locally convex topology onX andA the collection
of all absorbing absolutely convex sets of X. Since A fulfills all the properties
required in Theorem 4.1.14, there exists a unique topology ⌧ which makes
X into a locally convex t.v.s.. Hence, by definition of finest locally convex

3Alternatively, we can show that S is separating by proving that there always exists a
norm on X. In fact, let B = (b

i

)
i2I

be an algebraic basis of X then for any x 2 X there
exist a finite subset J of I and �

j

2 K for all j 2 J s.t. x =
P

j2J

�

j

b

j

and so we can define
kxk := max

j2J

|�
j

|. Then it is easy to check that k · k is a norm on X. Hence, S always
contains the norm k · k and so it is separating.
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topology, ⌧ ✓ ⌧
max

. On the other hand, (X, ⌧
max

) is itself locally convex and
so Theorem 4.1.14 ensures that has a basis B

max

of neighbourhoods of the
origin consisting of absorbing absolutely convex subsets of X. Then clearly
B
max

is contained in A and, hence, ⌧
max

✓ ⌧ .

This result can be proved also using Proposition 4.4.1 and the correspon-
dence between Minkowski functionals and absorbing absolutely convex subsets
of X introduced in the Section 4.2 (see Exercise Sheet 5).

Proposition 4.4.3. Every linear functional on a vector space X is continuous
w.r.t. the finest locally convex topology on X.

Proof. Let L : X ! K be a linear functional on a vector space X. For any
" > 0, we denote by B

"

(0) the open ball in K of radius " and center 0 2 K,
i.e. B

"

(0) := {k 2 K : |k| < "}. Then we have that L�1(B
"

(0)) = {x 2 X :
|L(x)| < "}. It is easy to verify that the latter is an absorbing absolutely
convex subset of X and so, by Proposition 4.4.2, it is a neighbourhood of the
origin in the finest locally convex topology on X. Hence L is continuous at
the origin and so, by Proposition 2.1.15-3), L is continuous everywhere in X.

4.5 Finite topology on a countable dimensional t.v.s.

In this section we are going to give an important example of finest locally
convex topology on an infinite dimensional vector space, namely the finite
topology on any countable dimensional vector space. For simplicity, we are
going to focus on R�vector spaces.

Definition 4.5.1. Let X be an infinite dimensional vector space whose di-
mension is countable. The finite topology ⌧

f

on X is defined as follows:
U ✓ X is open in ⌧

f

i↵ U \W is open in the euclidean topology on W for all
finite dimensional subspaces W of X.
Equivalently, if we fix an algebraic basis {x

n

}
n2N of X and if for any n 2 N

we set X
n

:= span{x1, . . . , xn} s.t. X =
S1

i=1Xi

and X1 ✓ . . . ✓ X
n

✓ . . .,
then U ✓ X is open in ⌧

f

i↵ U \X
i

is open in the euclidean topology on X
i

for every i 2 N.

We actually already know a concrete example of countable dimensional
space with the finite topology:
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Example 4.5.2. Let n 2 N and x = (x1, . . . , xn). Denote by R[x] the space
of polynomials in the n variables x1, . . . , xn with real coe�cients and by

R
d

[x] := {f 2 R[x]| deg f  d}, d 2 N0,

then R[x] :=
S1

d=0Rd

[x]. The finite topology ⌧
f

on R[x] is then given by:
U ✓ R[x] is open in ⌧

f

i↵ 8d 2 N0, U \ R
d

[x] is open in R
d

[x] with the
euclidean topology.

Theorem 4.5.3. Let X be an infinite dimensional vector space whose dimen-
sion is countable endowed with the finite topology ⌧

f

. Then:
a) (X, ⌧

f

) is a Hausdor↵ locally convex t.v.s.
b) ⌧

f

is the finest locally convex topology on X

Proof.
a) We leave to the reader the proof of the fact that ⌧

f

is compatible with the
linear structure of X (see Exercise Sheet 6) and we focus instead on proving
that ⌧

f

is a locally convex topology. To this aim we are going to show that
for any open neighbourhood U of the origin in (X, ⌧

f

) there exists an open
convex neighbourhood U 0 of the origin such that U 0 ✓ U .

Let {x
i

}
i2N be an R-basis for X and set X

j

:= span{x1, . . . , xj} for any
j 2 N. Fixed an open neighbourhood U of the origin in (X, ⌧

f

), we are going
to inductively construct an increasing sequence of convex subsets (C

j

)
j2N such

that C
j

✓ U \X
j

for any j 2 N. Indeed, we will show that

8 j 2 N, 9a
j

2 R+ : C
j

:=
�

�1x1+. . .+�
j

x
j

|�a
i

 �
i

 a
i

; i 2 {1, . . . , j}
 

✓ U\X
j

.
(4.7)

Note that each C
j

is a convex and closed in X
j

as well as in X
j+1.

• j = 1: Since U \ X1 is open in X1, we have that there exists a1 2 R+

such that C1 :=
�

�1x1 | � a1  �1  a1
 

✓ U \X1, i.e. (4.7) holds.
• Inductive assumption: Fixed a natural number n � 2, suppose (4.7)

holds for all j 2 {1, . . . , n}, i.e. 9 a1, . . . , an 2 R+ s.t. C
j

✓ U \X
j

, 8j 2
{1, . . . , n}.

• j = n+ 1: We claim 9 a
n+1 2 R+ such that C

n+1 ✓ U \X
n+1.

If the claim does not hold, then 8 a
n+1 2 R+, 9 x 2 C

n+1 s.t. x /2 U .
In particular, 8 N 2 N 9�N

1 , . . . ,�N

n+1 2 R such that �a
i

 �N

i

 a
i

for

i 2 {1, . . . , n}, � 1

N
 �N

n+1 
1

N
and

xN = �N

1 x1 + . . .�N

n

x
n

+ �N

n+1xn+1 /2 U.

Hence, {xN}
N2N is bounded sequence of elements inX

n+1\U . There-
fore, we can find a convergent subsequence {xNj}

j2N and we denote by
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x its limit. Since X
n+1 \U is closed in X

n+1, we have that x 2 X
n+1 \U .

However, xN has the form xN = �N

1 x1 + . . .+ �N

n

x
n

| {z }

2 C

n

+�N

n+1xn+1, so its

(n + 1)�th component tends to 0 as j ! 1 and, hence, x 2 C
n

✓ U
(since C

n

is closed in X
n+1). This provides a contradiction, establishing

the claim.
Now for any n 2 N consider

D
n

:=
�

�1x1 + . . .+ �
n

x
n

|� a
i

< �
i

< a
i

; i 2 {1, . . . , n}
 

,

then D
n

⇢ C
n

✓ U \X
n

is open and convex in X
n

. Then U 0 := [
n2NDn

is
an open and convex neighbourhood of the origin in (X, ⌧

f

) and U 0 ✓ U .
b) Let us finally show that ⌧

f

is actually the finest locally convex topology
⌧
max

on X which gives in turn also that (X, ⌧
f

) is Hausdor↵. Since we have
already showed that ⌧

f

is a l.c. topology on X, clearly we have ⌧
f

✓ ⌧
max

by
definition of finest l.c. topology on X.

Conversely, let us consider U ✓ X open in ⌧
max

. We want to show that
U is open in ⌧

f

, i.e. W \ U is open in the euclidean topology on W for any
finite dimensional subspace W of X. Now each W inherits ⌧

max

from X.
Let us denote by ⌧W

max

the subspace topology induced by (X, ⌧
max

) on W . By
definition of subspace topology, we have thatW\U is open in ⌧W

max

. Moreover,
by Proposition 4.4.1, we know that (X, ⌧

max

) is a Hausdor↵ t.v.s. and so
(W, ⌧W

max

) is a finite dimensional Hausdor↵ t.v.s. (by Proposition 2.1.15-1).
Therefore, ⌧W

max

has to coincide with the euclidean topology by Theorem 3.1.1
and, consequently, W \ U is open w.r.t. the euclidean topology on W .

4.6 Continuity of linear mappings on locally convex spaces

In the context of l.c. spaces, it is natural to ask whether the continuity of linear
maps can be characterized via seminorms. In this section, we in fact present
a necessary and su�cient condition for the continuity of a linear map between
two l.c. spaces only bearing on the seminorms inducing the two topologies.

For simplicity, let us start with linear functionals on a l.c. space. Recall
that for us K = R or K = C endowed with the euclidean topology given by
the absolute value | · |. In this section, for any " > 0 we denote by B

"

(0) the
open ball in K of radius " and center 0 2 K i.e. B

"

(0) := {k 2 K : |k| < "}.

Proposition 4.6.1. Let ⌧ be a locally convex topology on a vector space X
generated by a directed family Q of seminorms on X and L : X ! K linear.
Then L is a ⌧ -continuous i↵ there exists q 2 Q s.t. L is q-continuous, i.e.

9q 2 Q, 9C > 0 s.t. |L(x)|  Cq(x), 8x 2 X. (4.8)
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4.6. Continuity of linear mappings on locally convex spaces

Proof.
Let us first observe that since X and K are both t.v.s. by Proposition 2.1.15-3)
the continuity of L is equivalent to its continuity at the origin. Therefore, it
is enough to prove the criterion for the continuity of L at the origin.

The ⌧ -continuity of L at the origin in X means that for any " > 0
L�1(B

"

(0)) = {x 2 X : |L(x)| < "} is an open neighbourhood of the origin in
(X, ⌧). Since the family Q inducing ⌧ is directed, a basis of neighbourhood of
the origin in (X, ⌧) is given by B

d

as in (4.5). Therefore, L is ⌧ -continuous at
the origin in X if and only if 8 " > 0, 9B 2 B

d

s.t. B ✓ L�1(B
"

(0)), i.e.

8 " > 0, 9 q 2 Q, 9 r > 0 s.t. rŮ
q

✓ L�1(B
"

(0)). (4.9)

4 ()) Suppose L is ⌧ -continuous at the origin in X then (4.9) implies that L
is q�continuous at the origin, because rŮ

q

is clearly an open neighbourhood
of the origin in X w.r.t. the topology generated by the single seminorm q.

(() Suppose that there exists q 2 Q s.t. L is q-continuous in X. Then,
since ⌧ is the topology induced by the whole family Q which is finer than
the one induced by the single seminorm q, we clearly have that L is also
⌧�continuous.

By using this result together with Proposition 4.2.14 we get the following.

Corollary 4.6.2. Let ⌧ be a locally convex topology on a vector space X
generated by a family P := {p

i

}
i2I of seminorms on X. Then L : X ! K is

a ⌧ -continuous linear functional i↵ there exist n 2 N, i1, . . . , in 2 I such that
L is

�

max
k=1,...,n

p
i

k

�

-continuous, i.e.

9n 2 N, 9 i1, . . . , in 2 I, 9C > 0 s.t. |L(x)|  C max
k=1,...,n

p
i

k

(x), 8x 2 X.

The proof of Proposition 4.6.1 can be easily modified to get the following
more general criterion for the continuity of any linear map between two locally
convex spaces.

Theorem 4.6.3. Let X and Y be two locally convex t.v.s. whose topologies
are respectively generated by the families P and Q of seminorms on X. Then
f : X ! Y linear is continuous i↵

8 q 2 Q, 9n 2 N, 9 p1, . . . , pn 2 P, 9C > 0 : q(f(x))  C max
i=1,...,n

p
i

(x), 8x 2 X.

Proof. (Exercise Sheet 6)

4Alternative proof: By simply observing that |L| is a seminorm and by using Proposi-
tion 4.2.10, one gets that (4.8) is equivalent to (4.9) and so to the q-continuity of L.
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