
Chapter 5

The Hahn-Banach Theorem
and its applications

5.1 The Hahn-Banach Theorem

One of the most important results in the theory of t.v.s. is the Hahn-Banach
theorem (HBT). It is named for Hans Hahn and Stefan Banach who proved
this theorem independently in the late 1920s, dealing with the problem of
extending continuous linear functionals defined on a subspace of a seminormed
vector space to the whole space. We will see that actually this extension
problem can be reduced to the problem of separating by a closed hyperplane
a convex open set and an a�ne submanifold (the image by a translation of
a linear subspace) which do not intersect. Indeed, there are several versions
of HBT in literature, but we are going to present for the moment just two of
them as representatives of the analytic and the geometric side of this result.

Before stating these two versions of HBT, let us recall the notion of hy-
perplane in a vector space (we always consider vector spaces over the field
K which is either R or C). A hyperplane H in a vector space X over K is
a maximal proper linear subspace of X or, equivalently, a linear subspace
of codimension one, i.e. dim(X/H) = 1. Another equivalent formulation is
that a hyperplane is a set of the form '�1({0}) for some linear functional
' : X ! K not identically zero. The translation by a non-null vector of a
hyperplane will be called a�ne hyperplane.

Theorem 5.1.1 (Analytic form of Hahn-Banach thm (for seminormed spaces)).
Let p be a seminorm on a vector space X over K, M a linear subspace of X,
and f a linear functional on M such that

|f(x)|  p(x), 8x 2 M. (5.1)

There exists a linear functional f̃ on X such that f̃(x) = f(x), 8x 2 M and

|f̃(x)|  p(x), 8x 2 X. (5.2)
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Theorem 5.1.2 (Geometric form of Hahn-Banach theorem).
Let X be a topological vector space over K, N a linear subspace of X, and ⌦
a non-empty open convex subset of X such that N \⌦ = ;. Then there exists
a closed hyperplane H of X such that

N ✓ H and H \ ⌦ = ;. (5.3)

It should be remarked that the vector space X does not apparently carry
any topology in Theorem 5.1.1, but actually the datum of a seminorm on X
is equivalent to the datum of the topology induced by this seminorm. It is
then clear that the conditions (5.1) and (5.2) imply the p�continuity of the
functions f and f̃ , respectively.

Let us also stress the fact that in Theorem 5.1.2 neither local convexity nor
the Hausdor↵ separation property are assumed on the t.v.s. X. Moreover, it is
easy to see that the geometric form of HBT could have been stated also in an
a�ne setting, namely starting with any a�ne submanifold N of X which does
not intersect the open convex subset ⌦ and getting a closed a�ne hyperplane
fulfilling (5.3).

We will first show how to derive Theorem 5.1.1 from Theorem 5.1.2 and
then give a proof of Theorem 5.1.2.

Before starting the proofs, let us fix one more definition. A convex cone
C in a vector space X over R is a subset of X which is closed under addition
and multiplication by positive scalars.

Proof. Theorem 5.1.2
1) Existence of a linear subspace H of X maximal for (5.3).

This first part of the proof is quite simple and consists in a straightforward
application of Zorn’s lemma. In fact, consider the family F of all the linear
subspaces S of X such that

N ✓ S and S \ ⌦ = ;. (5.4)

F is clearly non-empty since N belongs to it by assumption. If we take now a
totally ordered subfamily C of F (totally ordered for the inclusion relation ✓),
then the union of all the linear subspaces belonging to C is a linear subspace
of X having the properties in (5.4) and containing each element of C. Hence,
we can apply Zorn’s lemma and conclude that there exists at least a maximal
element H in F .

2) H is closed in X.
The fact that H and ⌦ do not intersect gives that H is contained in the
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complement of ⌦ in X. This implies that also its closure H does not intersect
⌦. Indeed, since ⌦ is open, we get

H ✓ X \ ⌦ = X \ ⌦.

Then H is a linear subspace of X (as closure of a linear subspace in a t.v.s.),
which is disjoint from ⌦ and which contains H and so N , i.e. H 2 F . Hence,
as H is maximal in F , it must coincide with its closure. Note that the fact
that H is closed guarantees that the quotient space X/H is a Hausdor↵ t.v.s.
(see Proposition 2.3.5).

3) H is an hyperplane
We want to show that H is a hyperplane, i.e. that dim(X/H) = 1. To this
aim we distinguish the two cases when K = R and when K = C.

3.1) Case K = R
Let � : X ! X/H be the canonical map. Since � is an open linear mapping
(see Proposition 2.3.2), �(⌦) is an open convex subset of X/H. Also we have
that �(⌦) does not contain the origin ô of X/H. Indeed, if ô 2 �(⌦) holds,
then there would exist x 2 ⌦ s.t. �(x) = ô and so x 2 H, which would
contradict the assumption H \ ⌦ = ;. Let us set:

A =
[

�>0

��(⌦).

Then the subset A of X/H is an open convex cone which does not contain the
origin ô.

Let us observe that X/H has at least dimension 1. Indeed, if dim(X/H) =
0 then X/H = {ô} and so X = H which contradicts the fact that ⌦ does
not intersect H (recall that we assumed ⌦ is non-empty). Suppose that
dim(X/H) � 2, then to get our conclusion it will su�ce to show the following
claims:

Claim 1: The boundary @A of A must contain at least one point x 6= ô.
Claim 2: The point �x cannot belong to A.

In fact, once Claim 1 is established, we have that x /2 A, because x 2 @A and
A is open. This together with Claim 2 gives that both x and �x belong to the
complement of A in X/H and, therefore, so does the straight line L defined
by these two points. (If there was a point y 2 L\A then any positive multiple
of y would belong to L \ A, as A is a cone. Hence, for some � > 0 we would
have x = �y 2 L \A, which contradicts the fact that x /2 A.) Then:

• ��1(L) is a linear subspace of X
• ��1(L) \ ⌦ = ;, since L \A = ;
• ��1(L) ) H because ô = �(H) ✓ L but L 6= {ô} since x 6= ô is in L.

69



5. The Hahn-Banach Theorem and its applications

This contradicts the maximality of H and so dim(X/H) = 1.
To complete the proof of 3.1) let us show the two claims.

Proof. of Claim 1
Suppose that @A = {ô}. This means that A has empty boundary in the set
(X/H) \ {ô}. Since dim(X/H) � 2, the space (X/H) \ {ô} is path-connected
and so connected. Hence, A = (X/H) \ {ô} which contradicts the convexity
of A since (X/H) \ {ô} is clearly not convex.

Proof. of Claim 2
Suppose �x 2 A. As A is open, there is a neighborhood V of �x entirely
contained in A. This implies that �V is a neighborhood of x. Since x is a
boundary point of A, there exists y 2 (�V ) \ A. But then �y 2 V ⇢ A
and so, by the convexity of A, the whole line segment between y and �y is
contained in A, in particular ô, which contradicts the definition of A.

3.2) Case K = C
Although here we are considering the scalars to be the complex numbers, we
may view X as a vector space over the real numbers and it is obvious that its
topology, as originally given, is still compatible with its linear structure. By
step 3.1) above, we know that there exists a real hyperplane H0 of X which
contains N and does not intersect ⌦. By a real hyperplane, we mean that
H0 is a linear subspace of X viewed as a vector space over the field of real
numbers such that dimR(X/H0) = 1.

Now it is easy to see that iN = N (here i =
p
�1). Hence, setting

H := H0 \ iH0, we have that N ✓ H and H \ ⌦ = ;. Then to complete the
proof it remains to show that this H is a complex hyperplane. It is obviously
a complex linear subspace of X and its real codimension is � 1 and  2 (since
the intersection of two distinct hyperplanes is always a linear subspace with
codimension two). Hence, its complex codimension is equal to one.

Proof. Theorem 5.1.2 ) Theorem 5.1.1
Let p be a seminorm on the vector space X, M a linear subspace of X, and f
a linear functional defined on M fulfilling (5.1). As already remarked before,
this means that f is continuous on M w.r.t. the topology induced by p on X
(which makes X a l.c. t.v.s.).

Consider the subset N := {x 2 M : f(x) = 1}. Taking any vector
x0 2 N , it is easy to see that N � x0 = Ker(f) (i.e. the kernel of f in
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M), which is a hyperplane of M and so a linear subspace of X. Therefore,
setting M0 := N � x0, we have the following decomposition of M :

M = M0 �Kx0,

where Kx0 is the one-dimensional linear subspace through x0. In other words

8x 2 M, 9!� 2 K, y 2 M0 : x = y + �x0.

Then
8x 2 M, f(x) = f(y) + �f(x0) = �f(x0) = �,

which means that the values of f on M are completely determined by the ones
on N . Consider now the open unit semiball of p:

U := Ů
p

= {x 2 X : p(x) < 1},

which we know being an open convex subset of X endowed with the topology
induced by p. Then N \U = ; because if there was x 2 N \U then p(x) < 1
and f(x) = 1, which contradict (5.1).

By Theorem 5.1.2 (a�ne version), there exists a closed a�ne hyperplane
H of X with the property that N ✓ H and H \ U = ;. Then H � x0
is a hyperplane and so the kernel of a continuous linear functional f̃ on X
non-identically zero.

Arguing as before (consider here the decomposition X = (H�x0)�Kx0),
we can deduce that the values of f̃ on X are completely determined by the
ones on N and so on H (because for any h 2 H we have h�x0 2 Ker(f̃) and
so f̃(h) � f̃(x0) = f̃(h � x0) = 0). Since f̃ 6⌘ 0, we have that f̃(x0) 6= 0 and
w.l.o.g. we can assume f̃(x0) = 1 i.e. f̃ ⌘ 1 on H. Therefore, for any x 2 M
there exist unique � 2 K and y 2 N � x0 ✓ H � x0 s.t. x = y + �x0, we get
that:

f̃(x) = �f̃(x0) = � = �f(x0) = f(x),

i.e. f is the restriction of f̃ to M . Furthermore, the fact that H\U = ; means
that f̃(x) = 1 implies p(x) � 1. Then for any y 2 X s.t. f̃(y) 6= 0 we have

that: f̃
⇣

y

f̃(y)

⌘

= 1 and so that p
⇣

y

f̃(y)

⌘

� 1 which implies that |f̃(y)|  p(y).

The latter obviously holds for f̃(y) = 0. Hence, (5.2) is established.

Theorem 5.1.2 is indeed slightly more general than Theorem 5.1.1. In fact,
Theorem 5.1.2 can be deduced from the following more general analytic form
of the Hahn-Banach Theorem.
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