
5. The Hahn-Banach Theorem and its applications

Theorem 5.1.3 (Analytic form of HBT for sublinear functionals). Let p be
a sublinear functional on a vector space X over R, M a linear subspace of X,
and f a linear functional on M such that

f(x)  p(x), 8x 2 M.

There exists a linear functional f̃ on X such that f̃(x) = f(x), 8x 2 M and
f̃(x)  p(x), 8x 2 X.

We are not going to show this version as it is usually proved in any Func-
tional Analysis text book but we show instead how Theorem 5.1.2 can be
deduced from it.

Proof. Theorem 5.1.3 ) Theorem 5.1.2
1) Case K = R
Let X be a t.v.s. over R, N a linear subspace of X, and ⌦ a non-empty
open convex subset of X such that N \ ⌦ = ;. Fixed n0 2 N and w0 2 ⌦,
let x0 := n0 � w0. Note that x0 6= o otherwise n0 = w0 2 N \ ⌦, which
contradicts the assumption that N \⌦ = ;. Then C := ⌦�N +x0 is an open
convex neighbourhood of the origin o in X. In fact, C =

S

n2N (⌦ � n + x0)
is clearly open and convex as union of such sets (recall that the topology of a
t.v.s. is translation invariant) and o = w0�n0+x0 2 C. Then the Minkowski
functional p

C

associated to C is a sublinear functional on X which assumes
finite non-negative values. Indeed:

• since C is absorbing, for all x 2 X we have that the set {h > 0 : x 2 hC}
is non-empty and so 0  p

C

(x) < 1
• the convexity of C ensures the subadditivity of p

C

• for all µ > 0 and all x 2 X, we have

p
C

(µx) = inf{� > 0 : µx 2 �C} = inf{� > 0 : x 2 �

µ
C}

= inf{µ�
µ
> 0 : x 2 �

µ
C} = µ inf{h > 0 : x 2 hC} = µp

C

(x).

Moreover, x0 /2 C (otherwise there would exist w 2 ⌦, n 2 N such that
x0 = w � n+ x0, i.e. w = n 2 N \ ⌦ which would contradict the assumption
that N \⌦ = ;). This implies that p

C

(x0) � 1, because otherwise there exists
0  �  1 such that x0 2 �C ✓ C1which yields a contraction. Since C is open

1For all c 2 C we have c = w � n+ x0 for some w 2 ⌦, n 2 N , and so for all 0  �  1

�c = �w � �n+ �x0 = �w � �n+ �n0 � �w0

= �w + (1� �)w0 � w0 + n0 � n0 � �n+ �n0

= �w + (1� �)w0| {z }
2⌦

+x0 � (n0 + �n� �n0)| {z }
2N

2 C.
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and the scalar multiplication is continuous, we also have that for any x 2 C
there exists 0 < µ < 1 such that x 2 µC and so p

C

(x)  µ < 1.
Now let M be the real vector space spanned by x0 and consider f : M ! R

defined by f(tx0) := t for all t 2 R. Then f(m)  p
C

(m) for all m 2 M ,
because if t > 0 then f(tx0) = t  tp

C

(x0) = p
C

(tx0) and if t  0 then
f(tx0) = t  0  p

C

(tx0). Therefore, we can apply Theorem 5.1.3 which
ensures the existence of a R�linear functional f̃ : X ! R such that f̃ �

M

= f
and f̃(x)  p

C

(x) for all x 2 X.
Hence, for any n 2 N and w 2 ⌦ we have that

f̃(w � n+ x0)  p
C

(w � n+ x0
| {z }

2C

) < 1

and so f̃(w)� f̃(n) < 1� f̃(x0)
x02M= 1� f(x0) = 1� 1 = 0, i.e.

f̃(w) < f̃(n), 8n 2 N, w 2 ⌦ (5.5)

This implies that f̃(N) = {0}. In fact, if there existed 0 6= r 2 f̃(N) then
f̃(N) = R and so f̃(N)\f̃(⌦) 6= ;, that is, 9y 2 f̃(N)\f̃(⌦) i.e. 9n 2 N,w 2 ⌦
s.t. y = f̃(w) = f̃(n) contradicting (5.5).

Taking H := {x 2 X : f̃(x) = 0} yields the conclusion. In fact, H is a real
hyperplane in X such that:

• N ⇢ H, since we showed f̃(N) = {0}

• H \ ⌦ = ;, because if there was x 2 H \ ⌦ then 0 = f̃(x)
ineq

< f̃(o) = 0
which is a contraction.

2) Case K = C
Let X be a t.v.s. over C and N a complex linear subspace of X. Looking at
X and N as linear spaces over R, we can use the proof above to get that there
exists a R�linear functional f̃ : X ! R such that f̃(x)  p

C

(x) for all x 2 X,
(5.5) holds and so f̃(N) = {o}.

Define g : X ! C by g(x) := f̃(x)� if̃(ix), 8 x 2 X. Then g is a C-linear
functional on X and H := {x 2 X : g(x) = 0} a complex hyperplane s.t.

• N ⇢ H, because for any n 2 N we have that in 2 N and so
g(n) = f̃(n)� if̃(in) = 0 as f̃(N) = {0}.

• H\⌦ = ;, because if there was x 2 H\⌦ then 0 = g(x) = f̃(x)� if̃(ix)
and so f̃(x)

|{z}

2R

= i f̃(ix)
| {z }

2R

which implies that f̃(ix) = 0.

Hence, f̃(x) = 0 = f̃(o)
(5.5)
> f̃(x) which is a contradiction.
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Summing up we have that

Theorem 5.1.3

Theorem 5.1.2 Theorem 5.1.1

5.2 Applications of Hahn-Banach theorem

The Hahn-Banach theorem is frequently applied in analysis, algebra and ge-
ometry, as will be seen in the forthcoming course. We will briefly indicate
in this section some applications of this theorem to problems of separation of
convex sets and to the multivariate moment problem. From now on we will
focus on t.v.s. over the field of real numbers.

5.2.1 Separation of convex subsets of a real t.v.s.

Let X t.v.s.over the field of real numbers and H be a closed a�ne hyperplane
of X. We say that two disjoint subsets A and B of X are separated by H
if A is contained in one of the two closed half-spaces determined by H and
B is contained in the other one. We can express this property in terms of
functionals. Indeed, since H = L�1({a}) for some L : X ! R linear not
identically zero and some a 2 R, we can write that A and B are separated by
H if and only if:

9 a 2 R s.t. L(A) � a and L(B)  a.

where for any S ✓ X the notation L(S)  a simply means 8s 2 S,L(s)  a
(and analogously for �, <,>,=, 6=).
We say that A and B are strictly separated by H if at least one of the two
inequalities is strict. (Note that there are several definition in literature for
the strict separation but for us it will be just the one defined above) In the
present subsection we would like to investigate whether one can separate, or
strictly separate, two disjoint convex subsets of a real t.v.s..

Proposition 5.2.1. Let X be a t.v.s. over the real numbers and A,B two
disjoint nonempty convex subsets of X.
a) If A is open, then there exists a closed a�ne hyperplane H of X separating

A and B, i.e. there exists a 2 R and a functional L : X ! R linear not
identically zero s.t. L(A) � a and L(B)  a.

74



5.2. Applications of Hahn-Banach theorem

b) If A and B are both open, the hyperplane H can be chosen so as to strictly
separate A and B, i.e. there exists a 2 R and L : X ! R linear not
identically zero s.t. L(A) � a and L(B) < a.

c) If A is a cone and B is open, then a can be chosen to be zero, i.e. there
exists L : X ! R linear not identically zero s.t. L(A) � 0 and L(B) < 0.

Proof.

a) Consider the set A�B := {a� b : a 2 A, b 2 B}. Then: A�B is an open
subset of X as it is the union of the open sets A � y as y varies over B;
A�B is convex as it is the Minkowski sum of the convex sets A and �B;
and o /2 (A�B) because if this was the case then there would be at least a
point in the intersection of A and B which contradicts the assumption that
they are disjoint. By applying Theorem 5.1.2 to N = {o} and U = A�B
we have that there is a closed hyperplane H of X which does not intersect
A�B (and passes through the origin) or, which is equivalent, there exists a
linear form f on X not identically zero such that f(A�B) 6= 0. Then there
exists a linear form L on X not identically zero such that L(A � B) > 0
(in the case f(A�B) < 0 just take L := �f), i.e.

8x 2 A, 8 y 2 B, L(x) > L(y). (5.6)

Since B 6= ; we have that a := inf
x2A L(x) > �1. Then (5.6) implies that

L(B)  a and we clearly have L(A) � a.
b) Let now both A and B be open convex and nonempty disjoint subsets of

X. By part a) we have that there exists a 2 R and L : X ! R linear not
identically zero s.t. L(A) � a and L(B)  a. Suppose that there exists
b 2 B s.t. L(b) = a. Since B is open, for any x 2 X there exists " > 0 s.t.
for all t 2 [0, "] we have b+ tx 2 B. Therefore, as L(B)  a, we have that

L(b+ tx)  a, 8 t 2 [0, "]. (5.7)

Now fix x 2 X, consider the function f(t) := L(b+ tx) for all t 2 R whose
first derivative is clearly given by f 0(t) = L(x) for all t 2 R. Then (5.7)
means that t = 0 is a point of local maximum for f and so f 0(0) = 0 i.e.
L(x) = 0. As x is an arbitrary point of x, we get L ⌘ 0 on X which is a
contradiction. Hence, L(B) < a.

c) Let now A be a nonempty convex cone of X and B an open convex
nonempty subset of X s.t. A \ B = ;. By part a) we have that there
exists a 2 R and L : X ! R linear not identically zero s.t. L(A) � a and
L(B)  a. Since A is a cone, for any t > 0 we have that tA ✓ A and so
tL(A) = L(tA) � a i.e. L(A) � a

t

. This implies that L(A) � inf
t>0

a

t

= 0.
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Moreover, part a) also gives that L(B) < L(A). Therefore, for any t > 0
and any x 2 A, we have in particular L(B) < L(tx) = tL(x) and so
L(B)  inf

t>0 tL(x) = 0. Since B is also open, we can exactly proceed as
in part b) to get L(B) < 0.

Let us show now two interesting consequences of this result which we will
use in the following subsection.

Corollary 5.2.2. Let (X, ⌧) be a locally convex t.v.s. over R endowed. If C is
a nonempty closed convex cone in X and x0 2 X \C then there exists a linear
functional L : X ! R non identically zero s.t. L(C) � 0 and L(x0) < 0.

Proof. As C is closed in (X, ⌧) and x0 2 X \C, we have that X \C is an open
neighbourhood of x0. Then the local convexity of (X, ⌧) guarantees that there
exists an open convex neighbourhood V of x0 s.t. V ✓ X \ C i.e. V \ C = ;.
By Proposition 5.2.1-c), we have that there exists L : X ! R linear not
identically zero s.t. L(C) � 0 and L(V ) < 0, in particular L(x0) < 0.

Before giving the second corollary, let us introduce some notations. Given
a convex cone C in a t.v.s. (X, ⌧) we define the first and the second dual of C
w.r.t. ⌧ respectively as follows:

C_
⌧

:= {` : X ! R linear |` is ⌧ � continuous and `(C) � 0}

C__
⌧

:= {x 2 X |8 ` 2 C_
⌧

, `(x) � 0}.

Corollary 5.2.3. Let X be real vector space endowed with the finest locally
convex topology '. If C is a nonempty convex cone in X, then C

'

= C__
'

.

Proof. Let us first observe that C
' ✓ C__

'

. Indeed, if x 2 C
'

then for any
` 2 C_

'

we have by definition of first dual of C that `(x) � 0. Hence, x 2 C__
'

.

Conversely, suppose there exists x0 2 C__
'

\C'

. By Corollary 5.2.2, there

exists a linear functional L : X ! R non identically zero s.t. L(C
'

) � 0 and
L(x0) < 0. As L(C) � 0 and every linear functional is '�continuous, we have
L 2 C_

'

. This together with the fact that L(x0) < 0 give x0 /2 C__
'

, which is

a contradiction. Hence, C
'

= C__
'

.
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