
5.2. Applications of Hahn-Banach theorem

5.2.2 Multivariate real moment problem

The moment problem has been first introduced by Stieltjes in 1894 (see [12])
for the case K = [0,+1), as a mean of studying the analytic behaviour of
continued fractions. Since then it has been largely investigated in a wide
range of subjects, but the theory is still far from being up to the demand of
applications. In this section we are going to give a very brief introduction to
this problem in the finite dimensional setting but for more detailed surveys
on this topics see e.g. [1, 8, 9].

Let µ be a nonnegative Borel measure defined on R. The n�th moment
of µ is defined as

mµ

n

:=

Z

R
xnµ(dx)

If all moments of µ exist and are finite, then (mµ

n

)1
n=0 is called the moment

sequence of µ. The moment problem addresses exactly the inverse question.

Definition 5.2.4 (Univariate real K�moment problem).
Given a a closed subset K of R and a sequence m := (m

n

)1
n=0 with m

n

2 R,
does there exists a nonnegative finite Radon measure µ having m as its moment
sequence and support supp(µ) contained in K, i.e. such that

m
n

=

Z

K

xnµ(dx), 8n 2 N0 and supp(µ) ✓ K?

If such a measure exists, we say that µ is a K-representing measure for
m and that it is a solution to the K�moment problem for m.

Recall that a Radon measure µ on a Hausdor↵ topological space X is
a non-negative Borel measure which is locally finite (i.e. every point of X
has a neighbourhood of finite measure) and inner regular (i.e. for each Borel
measurable set B in X we have µ(B) = sup{µ(K) : K ✓ B, compact}).

To any sequence m := (m
n

)1
n=0 of real numbers we can always associate

the so-called Riesz’ functional defined by:

L
m

: R[x] ! R

p(x) :=
N

P

n=0
p
n

xn 7! L
m

(p) :=
N

P

n=0
p
n

m
n

.

If µ is a K�representing measure for m, then

L
m

(p) =
N

X

n=0

p
n

m
n

=
N

X

n=0

p
n

Z

K

xnµ(dx) =

Z

K

p(x)µ(dx).
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Hence, there is the following bijective correspondence between the set RN0 of
all sequences of real numbers and the set (R[x])⇤ of all linear functional from
R[x] to R

RN0 ! (R[x])⇤

(m
n

)
n2N0 7! L

m

(L(xn))
n2N0  [ L

which allows us to reformulate the univariate K�moment problem in terms
of linear functionals.

Definition 5.2.5 (Univariate real K�moment problem).
Given a closed subset K of Rd and a linear functional L : R[x] ! R, does
there exists a nonnegative finite Radon measure µ s.t.

L(p) =

Z

Rd

p(x)µ(dx), 8p 2 R[x] and supp(µ) ✓ K?

This formulation clearly shows us how to pose the problem in higher di-
mensions, but before that let us fix some notations. Let d 2 N and let R[x] be
the ring of polynomials with real coe�cients and d variables x := (x1, . . . , x

d

).

Definition 5.2.6 (Multivariate real K�moment problem).
Given a closed subset K of Rd and a linear functional L : R[x] ! R, does
there exists a nonnegative finite Borel measure µ s.t.

L(p) =

Z

Rd

p(x)µ(dx), 8p 2 R[x]

and supp(µ) ✓ K?
If such a measure exists, we say that µ is a K-representing measure for L

and that it is a solution to the K�moment problem for L.

A necessary condition for the existence of a solution to the K�moment
problem for the linear functional L is clearly that L is nonnegative on

Psd(K) := {p 2 R[x] : p(x) � 0, 8x 2 K}.

In fact, if there exists a K�representing measure µ for L then for all p 2
Psd(K) we have

L(p) =

Z

Rd

p(x)µ(dx) =

Z

K

p(x)µ(dx) � 0

since µ is nonnegative and supported on K and p is nonnegative on K.

78



5.2. Applications of Hahn-Banach theorem

It is then natural to ask if the nonnegative of L on Psd(K) is also su�cient.
The answer is positive and it was established by Riesz in 1923 for d = 1 and
by Haviland for any d � 2.

Theorem 5.2.7 (Riesz-Haviland Theorem). Let K be a closed subset of Rd

and L : R[x] ! R be linear. L has a K�representing measure if and only if
L(Psd(K)) � 0.

Note that this theorem provides a complete solution for the K� moment
problem but it is quite unpractical! In fact, it reduces the K�moment prob-
lem to the problem of classifying all polynomials which are nonnegative on a
prescribed closed subset K of Rd i.e. to characterize Psd(K). This is actu-
ally a hard problem to be solved for general K and it is a core question in
real algebraic geometry. For example, if we think of the case K = Rd then
for d = 1 we know that Psd(K) =

P

R[x]2, where
P

R[x]2 denotes the set
of squares of polynomials. However, for d � 2 this equality does not hold
anymore as it was proved by Hilbert in 1888. It is now clear that to make
the conditions of the Riesz-Haviland theorem actually checkable we need to
be able to write/approximate a non-negative polynomial on K by polynomi-
als whose non-negativity is “more evident”, i.e. sums of squares or elements
of quadratic modules of R[x]. For a special class of closed subsets of Rd we
actually have such representations and we can get better conditions than the
ones of Riesz-Haviland type to solve the K�moment problem.

Definition 5.2.8. Given a finite set of polynomials S := {g1, . . . , gs}, we call
the basic closed semialgebraic set generated by S the following

K
S

:= {x 2 Rd : g
i

(x) � 0, i = 1, . . . , s}.

Definition 5.2.9. A subset M of R[x] is said to be a quadratic module if
1 2M , M +M ✓M and h2M ✓M for any h 2 R[x].

Note that each quadratic module is a convex cone in R[x].

Definition 5.2.10. A quadratic module M of R[x] is called Archimedean if
there exists N 2 N s.t. N � (

P

d

i=1 x
2
i

) 2M .

For S := {g1, . . . , gs} finite subset of R[x], we define the quadratic module
generated by S to be:

M
S

:=

(

s

X

i=0

�
i

g
i

: �
i

2
X

R[x]2, i = 0, 1, . . . , s

)

,

where g0 := 1.
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Remark 5.2.11. Note that M
S

✓ Psd(K
S

) and M
S

is the smallest quadratic
module of R[x] containing S.

Consider now the finite topology on R[x] (see Definition 4.5.1) which we
have proved to be the finest locally convex topology on this space (see Propo-
sition 4.5.3) and which we therefore denote by '. By Corollary 5.2.3, we get
that

M
S

'

= (M
S

)__
'

(5.8)

Moreover, the Putinar Positivstellesatz (1993), a milestone result in real al-
gebraic geometry, provides that if M

S

is Archimedean then

Psd(K
S

) ✓M
S

'

. (5.9)

Note that M
S

is Archimedean implies that K
S

is compact while the converse
is in general not true (see e.g. [9]).

Combining (5.8) and (5.9), we get the following result.

Proposition 5.2.12. Let S := {g1, . . . , gs} be a finite subset of R[x] and
L : R[x] ! R linear. Assume that M

S

is Archimedean. Then there exists a
K

S

-representing measure µ for L if and only if L(M
S

) � 0, i.e. L(h2g
i

) � 0
for all h 2 R[x] and for all i 2 {1, . . . , s}.

Proof. Suppose that L(M
S

) � 0 and let us consider the finite topology '
on R[x]. Then the linear functional L is '-continuous and so L 2 (M

S

)_
'

.
Moreover, as M

S

is assumed to be Archimedean, we have

Psd(K
S

)
(5.9)
✓ M

S

'

(5.8)
= (M

S

)__
'

.

Since any p 2 Psd(K
S

) is also an element of (M
S

)__
'

, we have that for any
` 2 (M

S

)_
'

, `(Psd(K
S

)) � 0 and in particular L(Psd(K
S

)) � 0. Hence, by
Riesz-Haviland theorem we get the existence of a K

S

-representing measure µ
for L.

Conversely, suppose that the there exists a K
S

-representing measure µ
for L. Then for all p 2M

S

we have in particular that

L(p) =

Z

Rd

p(x)µ(dx)

which is nonnegative as µ is a nonnegative measure supported on K
S

and
p 2M

S

✓ Psd(K
S

).
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From this result and its proof we understand that whenever we know that
Psd(K

S

) ✓M
S

'

, we need to check only that L(M
S

) � 0 to find out whether
or not there exists a solution for the K

S

�moment problem for L. Then it
makes sense to look for closure results of this kind in the case when M

S

is
not Archimedean and so we cannot apply the Putinar Positivstellesatz. Ac-
tually, whenever we can find a locally convex topology ⌧ on R[x] for which
Psd(K

S

) ✓ M
S

⌧

, the conditions L(M
S

) � 0 is necessary and su�cient for
the existence of a solution of the K

S

�moment problem for any ⌧�continuous
linear functional L on R[x] (see [2]). This relationship between the closure of
quadratic modules and the representability of functionals continuous w.r.t. lo-
cally convex topologies started a new research line in the study of the moment
problem which is still bringing interesting results.
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