5.2.2 Multivariate real moment problem

The moment problem has been first introduced by Stieltjes in 1894 (see [12]) for the case $K = [0, +\infty)$, as a mean of studying the analytic behaviour of continued fractions. Since then it has been largely investigated in a wide range of subjects, but the theory is still far from being up to the demand of applications. In this section we are going to give a very brief introduction to this problem in the finite dimensional setting but for more detailed surveys on this topics see e.g. [1, 8, 9].

Let μ be a nonnegative Borel measure defined on \mathbb{R} . The *n*-th moment of μ is defined as

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of μ exist and are finite, then $(m_n^{\mu})_{n=0}^{\infty}$ is called the *moment* sequence of μ . The moment problem addresses exactly the inverse question.

Definition 5.2.4 (Univariate real *K*-moment problem).

Given a a closed subset K of \mathbb{R} and a sequence $m := (m_n)_{n=0}^{\infty}$ with $m_n \in \mathbb{R}$, does there exists a nonnegative finite Radon measure μ having m as its moment sequence and support $supp(\mu)$ contained in K, i.e. such that

$$m_n = \int_K x^n \mu(dx), \quad \forall n \in \mathbb{N}_0 \quad and \quad supp(\mu) \subseteq K?$$

If such a measure exists, we say that μ is a K-representing measure for m and that it is a solution to the K-moment problem for m.

Recall that a *Radon measure* μ on a Hausdorff topological space X is a non-negative Borel measure which is locally finite (i.e. every point of X has a neighbourhood of finite measure) and inner regular (i.e. for each Borel measurable set B in X we have $\mu(B) = \sup\{\mu(K) : K \subseteq B, \text{ compact}\}$).

To any sequence $m := (m_n)_{n=0}^{\infty}$ of real numbers we can always associate the so-called *Riesz' functional* defined by:

$$L_m: \quad \mathbb{R}[x] \qquad \to \quad \mathbb{R}$$
$$p(x) := \sum_{n=0}^N p_n x^n \quad \mapsto \quad L_m(p) := \sum_{n=0}^N p_n m_n.$$

If μ is a K-representing measure for m, then

$$L_m(p) = \sum_{n=0}^{N} p_n m_n = \sum_{n=0}^{N} p_n \int_K x^n \mu(dx) = \int_K p(x)\mu(dx).$$

77

Hence, there is the following bijective correspondence between the set $\mathbb{R}^{\mathbb{N}_0}$ of all sequences of real numbers and the set $(\mathbb{R}[x])^*$ of all linear functional from $\mathbb{R}[x]$ to \mathbb{R}

$$\mathbb{R}^{\mathbb{N}_0} \longrightarrow (\mathbb{R}[x])$$

$$(m_n)_{n \in \mathbb{N}_0} \longmapsto L_m$$

$$(L(x^n))_{n \in \mathbb{N}_0} \longleftrightarrow L$$

which allows us to reformulate the univariate K-moment problem in terms of linear functionals.

Definition 5.2.5 (Univariate real *K*-moment problem).

Given a closed subset K of \mathbb{R}^d and a linear functional $L : \mathbb{R}[x] \to \mathbb{R}$, does there exists a nonnegative finite Radon measure μ s.t.

$$L(p) = \int_{\mathbb{R}^d} p(x)\mu(dx), \, \forall p \in \mathbb{R}[x] \quad and \quad supp(\mu) \subseteq K?$$

This formulation clearly shows us how to pose the problem in higher dimensions, but before that let us fix some notations. Let $d \in \mathbb{N}$ and let $\mathbb{R}[\underline{x}]$ be the ring of polynomials with real coefficients and d variables $\underline{x} := (x_1, \ldots, x_d)$.

Definition 5.2.6 (Multivariate real *K*-moment problem).

Given a closed subset K of \mathbb{R}^d and a linear functional $L : \mathbb{R}[\underline{x}] \to \mathbb{R}$, does there exists a nonnegative finite Borel measure μ s.t.

$$L(p) = \int_{\mathbb{R}^d} p(\underline{x}) \mu(d\underline{x}), \, \forall p \in \mathbb{R}[\underline{x}]$$

and $supp(\mu) \subseteq K$?

If such a measure exists, we say that μ is a K-representing measure for L and that it is a solution to the K-moment problem for L.

A necessary condition for the existence of a solution to the K-moment problem for the linear functional L is clearly that L is nonnegative on

$$Psd(K) := \{ p \in \mathbb{R}[\underline{x}] : p(\underline{x}) \ge 0, \forall x \in K \}.$$

In fact, if there exists a K-representing measure μ for L then for all $p \in Psd(K)$ we have

$$L(p) = \int_{\mathbb{R}^d} p(\underline{x}) \mu(d\underline{x}) = \int_K p(\underline{x}) \mu(d\underline{x}) \ge 0$$

since μ is nonnegative and supported on K and p is nonnegative on K.

It is then natural to ask if the nonnegative of L on Psd(K) is also sufficient. The answer is positive and it was established by Riesz in 1923 for d = 1 and by Haviland for any $d \ge 2$.

Theorem 5.2.7 (Riesz-Haviland Theorem). Let K be a closed subset of \mathbb{R}^d and $L : \mathbb{R}[\underline{x}] \to \mathbb{R}$ be linear. L has a K-representing measure if and only if $L(Psd(K)) \ge 0.$

Note that this theorem provides a complete solution for the K- moment problem but it is quite unpractical! In fact, it reduces the K-moment problem to the problem of classifying all polynomials which are nonnegative on a prescribed closed subset K of \mathbb{R}^d i.e. to characterize Psd(K). This is actually a hard problem to be solved for general K and it is a core question in real algebraic geometry. For example, if we think of the case $K = \mathbb{R}^d$ then for d = 1 we know that $Psd(K) = \sum \mathbb{R}[\underline{x}]^2$, where $\sum \mathbb{R}[\underline{x}]^2$ denotes the set of squares of polynomials. However, for $d \geq 2$ this equality does not hold anymore as it was proved by Hilbert in 1888. It is now clear that to make the conditions of the Riesz-Haviland theorem actually checkable we need to be able to write/approximate a non-negative polynomial on K by polynomials whose non-negativity is "more evident", i.e. sums of squares or elements of quadratic modules of $\mathbb{R}[\underline{x}]$. For a special class of closed subsets of \mathbb{R}^d we actually have such representations and we can get better conditions than the ones of Riesz-Haviland type to solve the K-moment problem.

Definition 5.2.8. Given a finite set of polynomials $S := \{g_1, \ldots, g_s\}$, we call the basic closed semialgebraic set generated by S the following

$$K_S := \{ \underline{x} \in \mathbb{R}^d : g_i(\underline{x}) \ge 0, \ i = 1, \dots, s \}.$$

Definition 5.2.9. A subset M of $\mathbb{R}[\underline{x}]$ is said to be a quadratic module if $1 \in M$, $M + M \subseteq M$ and $h^2M \subseteq M$ for any $h \in \mathbb{R}[\underline{x}]$.

Note that each quadratic module is a convex cone in $\mathbb{R}[\underline{x}]$.

Definition 5.2.10. A quadratic module M of $\mathbb{R}[\underline{x}]$ is called Archimedean if there exists $N \in \mathbb{N}$ s.t. $N - (\sum_{i=1}^{d} x_i^2) \in M$.

For $S := \{g_1, \ldots, g_s\}$ finite subset of $\mathbb{R}[\underline{x}]$, we define the quadratic module generated by S to be:

$$M_S := \left\{ \sum_{i=0}^s \sigma_i g_i : \sigma_i \in \sum \mathbb{R}[\underline{x}]^2, i = 0, 1, \dots, s \right\},\$$

where $g_0 := 1$.

79

Remark 5.2.11. Note that $M_S \subseteq Psd(K_S)$ and M_S is the smallest quadratic module of $\mathbb{R}[\underline{x}]$ containing S.

Consider now the finite topology on $\mathbb{R}[\underline{x}]$ (see Definition 4.5.1) which we have proved to be the finest locally convex topology on this space (see Proposition 4.5.3) and which we therefore denote by φ . By Corollary 5.2.3, we get that

$$\overline{M_S}^{\varphi} = (M_S)_{\varphi}^{\vee \vee} \tag{5.8}$$

Moreover, the *Putinar Positivstellesatz* (1993), a milestone result in real algebraic geometry, provides that if M_S is Archimedean then

$$Psd(K_S) \subseteq \overline{M_S}^{\varphi}.$$
 (5.9)

Note that M_S is Archimedean implies that K_S is compact while the converse is in general not true (see e.g. [9]).

Combining (5.8) and (5.9), we get the following result.

Proposition 5.2.12. Let $S := \{g_1, \ldots, g_s\}$ be a finite subset of $\mathbb{R}[\underline{x}]$ and $L : \mathbb{R}[\underline{x}] \to \mathbb{R}$ linear. Assume that M_S is Archimedean. Then there exists a K_S -representing measure μ for L if and only if $L(M_S) \ge 0$, i.e. $L(h^2g_i) \ge 0$ for all $h \in \mathbb{R}[\underline{x}]$ and for all $i \in \{1, \ldots, s\}$.

Proof. Suppose that $L(M_S) \geq 0$ and let us consider the finite topology φ on $\mathbb{R}[\underline{x}]$. Then the linear functional L is φ -continuous and so $L \in (M_S)_{\varphi}^{\vee}$. Moreover, as M_S is assumed to be Archimedean, we have

$$Psd(K_S) \stackrel{(5.9)}{\subseteq} \overline{M_S}^{\varphi} \stackrel{(5.8)}{=} (M_S)_{\varphi}^{\vee \vee}.$$

Since any $p \in Psd(K_S)$ is also an element of $(M_S)_{\varphi}^{\vee\vee}$, we have that for any $\ell \in (M_S)_{\varphi}^{\vee}$, $\ell(Psd(K_S)) \geq 0$ and in particular $L(Psd(K_S)) \geq 0$. Hence, by Riesz-Haviland theorem we get the existence of a K_S -representing measure μ for L.

Conversely, suppose that the there exists a K_S -representing measure μ for L. Then for all $p \in M_S$ we have in particular that

$$L(p) = \int_{\mathbb{R}^d} p(\underline{x}) \mu(d\underline{x})$$

which is nonnegative as μ is a nonnegative measure supported on K_S and $p \in M_S \subseteq Psd(K_S)$.

From this result and its proof we understand that whenever we know that $Psd(K_S) \subseteq \overline{M_S}^{\varphi}$, we need to check only that $L(M_S) \ge 0$ to find out whether or not there exists a solution for the K_S -moment problem for L. Then it makes sense to look for closure results of this kind in the case when M_S is not Archimedean and so we cannot apply the Putinar Positivstellesatz. Actually, whenever we can find a locally convex topology τ on $\mathbb{R}[\underline{x}]$ for which $Psd(K_S) \subseteq \overline{M_S}^{\tau}$, the conditions $L(M_S) \ge 0$ is necessary and sufficient for the existence of a solution of the K_S -moment problem for any τ -continuous linear functional L on $\mathbb{R}[\underline{x}]$ (see [2]). This relationship between the closure of quadratic modules and the representability of functionals continuous w.r.t. locally convex topologies started a new research line in the study of the moment problem which is still bringing interesting results.