
1.1. Topological spaces

Example 1.1.13. The open sets of a topological space other than the empty
set always form a basis of neighbourhoods.

Theorem 1.1.14. Given a topological space X and a point x 2 X, a basis of
open neighbourhoods B(x) satisfies the following properties.

(B1) For any U 2 B(x), x 2 U .

(B2) For any U1, U2 2 B(x), 9U3 2 B(x) s.t. U3 ✓ U1 \ U2.

(B3) If y 2 U 2 B(x), then 9W 2 B(y) s.t. W ✓ U .

Viceversa, if for each point x in a set X we are given a collection of subsets
B
x

fulfilling the properties (B1), (B2) and (B3) then there exists a unique
topology ⌧ s.t. for each x 2 X, B

x

is a basis of neighbourhoods of x, i.e.
B
x

⌘ B(x), 8x 2 X.

Proof. The proof easily follows by using Theorem 1.1.10.

The previous theorem gives a further way of introducing a topology on a
set. Indeed, starting from a basis of neighbourhoods of X, we can define a
topology on X by setting that a set is open i↵ whenever it contains a point
it also contains a basic neighbourhood of the point. Thus a topology on a set
X is uniquely determined by a basis of neighbourhoods of each of its points.

1.1.2 Comparison of topologies

Any set X may carry several di↵erent topologies. When we deal with topo-
logical vector spaces, we very often encounter this situation, i.e. a a vector
space carrying several topologies all compatible with the linear structure in
a sense that is going to be specified soon (in Chapter 2). In this case, it is
convenient being able to compare topologies.

Definition 1.1.15. Let ⌧ , ⌧ 0 be two topologies on the same set X. We say
that ⌧ is coarser (or weaker) than ⌧ 0, in symbols ⌧ ✓ ⌧ 0, if every subset of X
which is open for ⌧ is also open for ⌧ 0, or equivalently, if every neighborhood
of a point in X w.r.t. ⌧ is also a neighborhood of that same point in the
topology ⌧ 0. In this case ⌧ 0 is said to be finer (or stronger) than ⌧ 0.

Denote by F(x) and F 0(x) the filter of neighbourhoods of a point x 2 X
w.r.t. ⌧ and w.r.t. ⌧ 0, respectively. Then: ⌧ is coarser than ⌧ 0 i↵ for any
point x 2 X we have F(x) ✓ F 0(x) (this means that every subset of X which
belongs to F(x) also belongs to F 0(x)).

Two topologies ⌧ and ⌧ 0 on the same set X coincide when they give the
same open sets or the same closed sets or the same neighbourhoods of each
point; equivalently, when ⌧ is both coarser and finer than ⌧ 0. Two basis of
neighbourhoods in X set are equivalent when they define the same topology.
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Remark 1.1.16. Given two topologies on the same set, it may very well
happen that none is finer than the other. If it is possible to establish which
one is finer, then we say that the two topologies are comparable.

Example 1.1.17.

The cofinite topology ⌧
c

on R, i.e. ⌧
c

:= {U ✓ R : U = ; or R \ U is finite},
and the topology ⌧

i

having {(�1, a) : a 2 R} as a basis are incomparable. In
fact, it is easy to see that ⌧

i

= {(�1, a) : a 2 R} [ {;,R} as these are the
unions of sets in the given basis. In particular, we have that R� {0} is in ⌧

c

but not ⌧
i

. Moreover, we have that (�1, 0) is in ⌧
i

but not ⌧
c

. Hence, ⌧
c

and
⌧
i

are incomparable.

It is always possible to construct at least two topologies on every set X by
choosing the collection of open sets to be as large or as small as possible:

• the trivial topology : every point of X has only one neighbourhood which
is X itself. Equivalently, the only open subsets are ; and X. The only
possible basis for the trivial topology is {X}.

• the discrete topology : given any point x 2 X, every subset of X contain-
ing x is a neighbourhood of x. Equivalently, every subset of X is open
(actually clopen). In particular, the singleton {x} is a neighbourhood
of x and actually is a basis of neighbourhoods of x. The collection of all
singletons is a basis for the discrete topology.

The discrete topology on a set X is finer than any other topology on X, while
the trivial topology is coarser than all the others. Topologies on a set form
thus a partially ordered set, having a maximal and a minimal element, respec-
tively the discrete and the trivial topology.

A useful criterion to compare topologies on the same set is the following:

Theorem 1.1.18 (Hausdor↵’s criterion).
Let ⌧ and ⌧ 0 two topologies on the same set X. For each x 2 X, let B(x) a
basis of neighbourhoods of x in (X, ⌧) and B0(x) a basis of neighbourhoods of x
in (X, ⌧ 0). Then: ⌧ ✓ ⌧ 0 i↵ 8x 2 X, 8U 2 B(x) 9V 2 B0(x) s.t. x 2 V ✓ U .

The Hausdor↵ criterion could be paraphrased by saying that smaller neigh-
borhoods make larger topologies. This is a very intuitive theorem, because
the smaller the neighbourhoods are the easier it is for a set to contain neigh-
bourhoods of all its points and so the more open sets there will be.

Proof.
) Suppose ⌧ ✓ ⌧ 0. Fixed any x 2 X, let U 2 B(x). Then, since U 2 F

⌧

(x),
there exists O 2 ⌧ s.t. x 2 O ✓ U . But O 2 ⌧ implies by our assumption
that O 2 ⌧ 0, so U 2 F

⌧

0(x). Hence, by Definition 1.1.12 for B0(x), there exists
V 2 B0(x) s.t. V ✓ U .
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( Let W 2 ⌧ . Then W 2 F
⌧

(x) for all x 2 X. Since B(x) is a basis of
neighbourhoods of x in (X, ⌧), for each x 2 W there exists U 2 B(x) such
that x 2 U ✓ W . This together with the assumption guarantees that there
exists V 2 B0(x) s.t. x 2 V ✓ U ✓ W . Hence, W 2 F

⌧

0(x) and so, by
Remark 1.1.11, we have W 2 ⌧ 0.

1.1.3 Reminder of some simple topological concepts

Definition 1.1.19. Given a topological space (X, ⌧) and a subset S of X, the
subset or induced topology on S is defined by ⌧

S

:= {S \U | U 2 ⌧}. That is,
a subset of S is open in the subset topology if and only if it is the intersection
of S with an open set in (X, ⌧). Alternatively, we can define ⌧

S

as the coarsest
topology on S for which the inclusion map ◆ : S ,! X is continuous.

Note that (S, ⌧
s

) is a topological space in its own.

Definition 1.1.20. Given a collection of topological space (X
i

, ⌧
i

), where i 2 I
(I is an index set possibly uncountable), the product topology on the Cartesian
product X :=

Q
i2I Xi

is defined in the following way: a set U is open in X
i↵ it is an arbitrary union of sets of the form

Q
i2I Ui

, where each U
i

2 ⌧
i

and U
i

6= X
i

for only finitely many i. Alternatively, we can define the product
topology to be the coarsest topology for which all the canonical projections
p
i

: X ! X
i

are continuous.

Definition 1.1.21.

Given a topological space X, we define:
• The closure of a subset A ✓ X is the smallest closed set containing A.

It will be denoted by Ā. Equivalently, Ā is the intersection of all closed
subsets of X containing A.

• The interior of a subset A ✓ X is the largest open set contained in A.
It will be denoted by Å. Equivalently, Å is the union of all open subsets
of X contained in A.

Proposition 1.1.22. Given a top. space X and A ✓ X, the following hold.
• A point x is a closure point of A, i.e. x 2 Ā, if and only if each

neighborhood of x has a nonempty intersection with A.
• A point x is an interior point of A, i.e. x 2 Å, if and only if there exists

a neighborhood of x which entirely lies in A.
• A is closed in X i↵ A = Ā.
• A is open in X i↵ A = Å.

Proof. (Recap Sheet 1)
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Example 1.1.23. Let ⌧ be the standard euclidean topology on R. Consider
X := (R, ⌧) and Y :=

�
(0, 1], ⌧

Y

�
, where ⌧

Y

is the topology induced by ⌧ on
(0, 1]. The closure of (0, 12) in X is [0, 12 ], but its closure in Y is (0, 12 ].

Definition 1.1.24. Let A and B be two subsets of the same topological space X.
A is dense in B if B ✓ Ā. In particular, A is said to be dense in X (or ev-
erywhere dense) if Ā = X.

Examples 1.1.25.

• Standard examples of sets everywhere dense in the real line R (with the
euclidean topology) are the set of rational numbers Q and the one of
irrational numbers R�Q.

• A set X is equipped with the discrete topology if and only if the whole
space X is the only dense set in itself.
If X is endowed with the discrete topology then every subset is equal to
its own closure (because every subset is closed), so the closure of a proper
subset is always proper. Conversely, if X is endowed with a topology ⌧
s.t. the only dense subset of X is itself, then for every proper subset
A its closure Ā is also a proper subset of X. Let y 2 X be arbitrary.
Then X \ {y} is a proper subset of X and so it has to be equal to its
own closure. Hence, {y} is open. Since y is arbitrary, this means that ⌧
is the discrete topology.

• Every non-empty subset of a set X equipped with the trivial topology
is dense, and every topology for which every non-empty subset is dense
must be trivial.
If X has the trivial topology and A is any non-empty subset of X, then
the only closed subset of X containing A is X. Hence, Ā = X, i.e. A
is dense in X. Conversely, if X is endowed with a topology ⌧ for which
every non-empty subset is dense, then the only non-empty subset of X
which is closed is X itself. Hence, ; and X are the only closed subsets
of ⌧ . This means that X has the trivial topology.

Proposition 1.1.26. Let X be a topological space and A ⇢ X. A is dense in
X if and only if every nonempty open set in X contains a point of A.

Proof. If A is dense in X, then by definition Ā = X. Let O be any nonempty
open subset in X. Then for any x 2 O we have that x 2 Ā and O 2 F(x).
Therefore, by Proposition 1.1.22, we have that O \ A 6= ;. Conversely, let
x 2 X. By definition of neighbourhood, for any U 2 F(x) there exists an
open subset O of X s.t. x 2 O ✓ U . Then U \A 6= ; since O contains a point
of A by our assumption. Hence, by Proposition 1.1.22, we get x 2 Ā and so
that A is dense in X.
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Definition 1.1.27. A topological space X is said to be separable if there exists
a countable dense subset of X.

Example 1.1.28.

• R with the euclidean topology is separable.
• The space C([0, 1]) of all continuous functions from [0, 1] to R endowed

with the uniform topology2 is separable, since by the Weirstrass approx-
imation theorem Q[x] = C([0, 1]).

Let us briefly consider now the notion of convergence.
First of all let us concern with filters. When do we say that a filter F on
a topological space X converges to a point x 2 X? Intuitively, if F has to
converge to x, then the elements of F , which are subsets of X, have to get
somehow “smaller and smaller” about x, and the points of these subsets need
to get “nearer and nearer” to x. This can be made more precise by using
neighborhoods of x: we want to formally express the fact that, however small
a neighborhood of x is, it should contain some subset of X belonging to the
filter F and, consequently, all the elements of F which are contained in that
particular one. But in view of Axiom (F3), this means that the neighborhood
of x under consideration must itself belong to the filter F , since it must contain
some element of F .

Definition 1.1.29. Given a filter F in a topological space X, we say that it
converges to a point x 2 X if every neighborhood of x belongs to F , in other
words if F is finer than the filter of neighborhoods of x.

We recall now the definition of convergence of a sequence to a point and
we see how it easily connects to the previous definition.

Definition 1.1.30. Given a sequence of points {x
n

}
n2N in a topological space

X, we say that it converges to a point x 2 X if for any U 2 F(x) there exists
N 2 N such that x

n

2 U for all n � N .

If we now consider the filter F
S

associated to the sequence S := {x
n

}
n2N,

i.e. F
S

:= {A ⇢ X : |S \A| < 1}, then it is easy to see that:

Proposition 1.1.31. Given a sequence of points S := {x
n

}
n2N in a topolog-

ical space X, S converges to a point x 2 X if and only if the associated filter
F
S

converges to x.
2
The uniform topology on C([0, 1]) is the topology induced by the supremum norm

k · k1, i.e. the topology on C([0, 1]) having as basis of neighbourhoods of any f 2 C([0, 1])
the collection {B

"

(f) : " 2 R+} where B

"

(f) := {g 2 C([0, 1]) : kg � fk1 < "} and

khk1 := sup

x2[0,1]
|h(x)|, 8h 2 C([0, 1])
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Proof. Set for each m 2 N, set S
m

:= {x
n

2 S : n � m}. By Definition 1.1.30,
S converges to x i↵ 8U 2 F(x), 9N 2 N : S

N

✓ U . As B := {S
m

: m 2 N}
is a basis for F

S

(c.f. Examples 1.1.8-c), we have that 8U 2 F(x), U 2 F
S

,
which is equivalent to say that F(x) ✓ F

S

.

1.1.4 Mappings between topological spaces

Definition 1.1.32. Let (X, ⌧
X

) and (Y, ⌧
Y

) be two topological spaces. A map
f : X ! Y is continuous if the preimage of any open set in Y is open in X,
i.e. 8U 2 ⌧

Y

, f�1(U) := {x 2 X : f(x) 2 U} 2 ⌧
X

. Equivalently, given any
point x 2 X and any V 2 F(f(x)) in Y , the preimage f�1(V ) 2 F(x) in X.

Examples 1.1.33.

• Let (X, ⌧
X

) and (Y, ⌧
Y

) be two topological spaces. Any constant map
f : X ! Y is continuous.
Suppose that f(x) := y for all x 2 X and some y 2 Y . Let U 2 ⌧

Y

. If
y 2 U then f�1(U) = X and if y /2 U then f�1(U) = ;. Hence, in either
case, f�1(U) is open in ⌧

X

.
• Let (X, ⌧

X

) and (Y, ⌧
Y

) be two topological spaces. If g : X ! Y is con-
tinuous, then the restriction of g to any subset S of X is also continuous
w.r.t. the subset topology induced on S by the topology on X.

• Let X be a set endowed with the discrete topology, Y be a set endowed
with the trivial topology and Z be any topological space. Any maps f :
X ! Z and g : Z ! Y are continuous.

Definition 1.1.34. Let (X, ⌧
X

) and (Y, ⌧
Y

) be two topological spaces. A map-
ping f : X ! Y is open if the image of any open set in X is open in Y , i.e.
8V 2 ⌧

X

, f(V ) := {f(x) : x 2 V } 2 ⌧
Y

. In the same way, a closed mapping
f : X ! Y sends closed sets to closed sets.

Note that a map may be open, closed, both, or neither of them. Moreover,
open and closed maps are not necessarily continuous.

Example 1.1.35. If Y is endowed with the discrete topology (i.e. all sub-
sets are open and closed) then every function f : X ! Y is both open and
closed (but not necessarily continuous). For example, if we take the standard
euclidean topology on R and the discrete topology on Z then the floor func-
tion R ! Z is open and closed, but not continuous. (Indeed, the preimage of
the open set {0} is [0, 1) ⇢ R, which is not open in the standard euclidean
topology).

If a continuous map f is one-to-one, f�1 does not need to be continuous.
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Example 1.1.36.

Let us consider [0, 1) ⇢ R and S1 ⇢ R2 endowed with the subspace topologies
given by the euclidean topology on R and on R2, respectively. The map

f : [0, 1) ! S1

t 7! (cos 2⇡t, sin 2⇡t).

is bijective and continuous but f�1 is not continuous, since there are open
subsets of [0, 1) whose image under f is not open in S1. (For example, [0, 12)
is open in [0, 1) but f([0, 12)) is not open in S1.)

Definition 1.1.37. A one-to-one map f from X onto Y is a homeomorphism
if and only if f and f�1 are both continuous. Equivalently, i↵ f and f�1 are
both open (closed). If such a mapping exists, X and Y are said to be two
homeomorphic topological spaces.

In other words an homeomorphism is a one-to-one mapping which sends
every open (resp. closed) set of X in an open (resp. closed) set of Y and
viceversa, i.e. an homeomorphism is both an open and closed map. Note that
the homeomorphism gives an equivalence relation on the class of all topological
spaces.

Examples 1.1.38. In these examples we consider any subset of Rn endowed
with the subset topology induced by the Euclidean topology on Rn.

1. Any open interval of R is homeomorphic to any other open interval of
R and also to R itself.

2. A circle and a square in R2 are homeomorphic.
3. The circle S1 with a point removed is homeomorphic to R.

Let us consider now the case when a set X carries two di↵erent topologies
⌧1 and ⌧2. Then the following two properties are equivalent:

• the identity ◆ of X is continuous as a mapping from (X, ⌧1) and (X, ⌧2)
• the topology ⌧1 is finer than the topology ⌧2.

Therefore, ◆ is a homeomorphism if and only if the two topologies coincide.

Proof. Suppose that ◆ is continuous. Let U 2 ⌧2. Then ◆�1(U) = U 2 ⌧1,
hence U 2 ⌧1. Therefore, ⌧2 ✓ ⌧1. Conversely, assume that ⌧2 ✓ ⌧1 and
take any U 2 ⌧2. Then U 2 ⌧1 and by definition of identity we know that
◆�1(U) = U . Hence, ◆�1(U) 2 ⌧1 and therefore, ◆ is continuous.

Proposition 1.1.39. Continuous maps preserve the convergence of sequences.
That is, if f : X ! Y is a continuous map between two topological spaces
(X, ⌧

X

) and (Y, ⌧
Y

) and if {x
n

}
n2N is a sequence of points in X convergent to

a point x 2 X then {f(x
n

)}
n2N converges to f(x) 2 Y .
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Proof. Let {x
n

}
n2N be a sequence of points in X convergent to a point x 2 X

and let U 2 F(f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5
that f�1(U) 2 F(x). Since {x

n

}
n2N converges to x, there exists N 2 N s.t.

x
n

2 f�1(U) for all n � N . Then f(x
n

) 2 U for all n � N . Hence, {f(x
n

)}
n2N

converges to f(x).
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