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}
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and let U 2 F(f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5
that f�1(U) 2 F(x). Since {x
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n

) 2 U for all n � N . Hence, {f(x
n

)}
n2N

converges to f(x).

1.1.5 Hausdor↵ spaces

Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa-
rated) if any two distinct points of X have neighbourhoods without common
points; or equivalently if:
(T2) two distinct points always lie in disjoint open sets.

In literature, the Hausdor↵ space are often called T2-spaces and the axiom
(T2) is said to be the separation axiom.

Proposition 1.1.41. In a Hausdor↵ space the intersection of all closed neigh-
bourhoods of a point contains the point alone. Hence, the singletons are closed.

Proof. Let us fix a point x 2 X, where X is a Hausdor↵ space. Denote
by C the intersection of all closed neighbourhoods of x. Suppose that there
exists y 2 C with y 6= x. By definition of Hausdor↵ space, there exist a
neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x)\V (y) = ;.
Therefore, y /2 U(x) because otherwise any neighbourhood of y (in particular
V (y)) should have non-empty intersection with U(x). Hence, y /2 C.

Examples 1.1.42.

1. Any metric space3 is Hausdor↵.
Indeed, for any x, y 2 (X, d) with x 6= y just choose 0 < " < 1

2d(x, y)
and you get B

"

(x) \B
"

(y) = ;.
2. Any set endowed with the discrete topology is a Hausdor↵ space.

Indeed, any singleton is open in the discrete topology so for any two
distinct point x, y we have that {x} and {y} are disjoint and open.

3. The only Hausdor↵ topology on a finite set is the discrete topology.
Let X be a finite set endowed with a Hausdor↵ topology ⌧ . As X is
finite, any subset S of X is finite and so S is a finite union of singletons.
But since (X, ⌧) is Hausdor↵, the previous proposition implies that any
singleton is closed. Hence, any subset S of X is closed and so the ⌧ has
to be the discrete topology.

3
Any metric space (X, d) is a topological space, because we can equip it with the topology

induced by the metric d, i.e. the topology having as basis of neighbourhoods of any x 2 X

the collection {B
"

(x) : " 2 R+} where B

"

(x) := {y 2 X : d(y, x) < "}.
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1.2. Linear mappings between vector spaces

4. An infinite set with the cofinite topology is not Hausdor↵.
In fact, any two non-empty open subsets O1, O2 in the cofinite topology
on X are complements of finite subsets. Therefore, their intersection
O1 \ O2 is a complement of a finite subset, but X is infinite and so
O1 \O2 6= ;. Hence, X is not Hausdor↵.

1.2 Linear mappings between vector spaces

The basic notions from linear algebra are assumed to be well-known and so
they are not recalled here. However, we briefly give again the definition of
vector space and fix some general terminology for linear mappings between
vector spaces. In this section we are going to consider vector spaces over the
field K of real or complex numbers which is given the usual euclidean topology
defined by means of the modulus.

Definition 1.2.1. A set X with the two mappings:

X ⇥X ! X
(x, y) 7! x+ y vector addition

K⇥X ! X
(�, x) 7! �x scalar multiplication

is a vector space (or linear space) over K if the following axioms are satisfied:
(L1) 1. (x+ y) + z = x+ (y + z), 8x, y, z 2 X (associativity of +)

2. x+ y = y + x, 8x, y 2 X (commutativity of +)
3. 9 o 2 X: x+ o = x, 8x,2 X (neutral element for +)
4. 8x 2 X, 9! � x 2 X s.t. x+ (�x) = o (inverse element for +)

(L2) 1. �(µx) = (�µ)x, 8x 2 X, 8�, µ 2 K
(compatibility of scalar multiplication with field multiplication)

2. 1x = x 8x 2 X (neutral element for scalar multiplication)
3. (�+ µ)x = �x+ µx, 8x 2 X, 8�, µ 2 K

(distributivity of scalar multiplication with respect to field addition)
4. �(x+ y) = �x+ �y, 8x, y 2 X, 8� 2 K

(distributivity of scalar multiplication wrt vector addition)

Definition 1.2.2.
Let X,Y be two vector space over K. A mapping f : X ! Y is called lin-
ear mapping or homomorphism if f preserves the vector space structure, i.e.
f(�x+ µy) = �f(x) + µf(y) 8x, y 2 X, 8�, µ 2 K.
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1. Preliminaries

Definition 1.2.3.

• A linear mapping from X to itself is called endomorphism.
• A one-to-one linear mapping is called monomorphism. If S is a subspace
of X, the identity map is a monomorphism and it is called embedding.

• An onto (surjective) linear mapping is called epimorphism.
• A bijective (one-to-one and onto) linear mapping between two vector
spaces X and Y over K is called (algebraic) isomorphism. If such a
map exists, we say that X and Y are (algebraically) isomorphic X ⇠= Y .

• An isomorphism from X into itself is called automorphism.

It is easy to prove that: A linear mapping is one-to-one (injective) if and
only if f(x) = 0 implies x = 0.

Definition 1.2.4. A linear mapping from X ! K is called linear functional
or linear form on X. The set of all linear functionals on X is called algebraic
dual and it is denoted by X⇤.

Note that the dual space of a finite dimensional vector space X is isomor-
phic to X.
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Chapter 2

Topological Vector Spaces

2.1 Definition and properties of a topological vector space

In this section we are going to consider vector spaces over the field K of real
or complex numbers which is given the usual euclidean topology defined by
means of the modulus.

Definition 2.1.1. A vector space X over K is called a topological vector space
(t.v.s.) if X is provided with a topology ⌧ which is compatible with the vector
space structure of X, i.e. ⌧ makes the vector space operations both continuous.

More precisely, the condition in the definition of t.v.s. requires that:

X ⇥X ! X
(x, y) 7! x+ y vector addition

K⇥X ! X
(�, x) 7! �x scalar multiplication

are both continuous when we endow X with the topology ⌧ , K with the eu-
clidean topology, X⇥X and K⇥X with the correspondent product topologies.

Remark 2.1.2. If (X, ⌧) is a t.v.s then it is clear from Definition 2.1.1 thatP
N

k=1 �
(n)
k

x
(n)
k

!
P

N

k=1 �k

x
k

as n ! 1 w.r.t. ⌧ if for each k = 1, . . . , N

as n ! 1 we have that �
(n)
k

! �
k

w.r.t. the euclidean topology on K and

x
(n)
k

! x
k

w.r.t. ⌧ .

Let us discuss now some examples and counterexamples of t.v.s.

Examples 2.1.3.

a) Every vector space X over K endowed with the trivial topology is a t.v.s..
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2. Topological Vector Spaces

b) Every normed vector space endowed with the topology given by the metric
induced by the norm is a t.v.s. (see Exercise Sheet 1).

c) There are also examples of spaces whose topology cannot be induced by a
norm or a metric but that are t.v.s., e.g. the space of infinitely di↵eren-
tiable functions, the spaces of test functions and the spaces of distributions
endowed with suitable topologies (which we will discuss in details later on).

In general, a metric vector space is not a t.v.s.. Indeed, there exist metrics
for which both the vector space operations of sum and product by scalars are
discontinuous (see Exercise Sheet 1 for an example).

Proposition 2.1.4. Every vector space X over K endowed with the discrete
topology is not a t.v.s. unless X = {o}.
Proof. Assume that it is a t.v.s. and take o 6= x 2 X. The sequence ↵

n

= 1
n

in K converges to 0 in the euclidean topology. Therefore, since the scalar
multiplication is continuous, ↵

n

x ! o by Proposition 1.1.39, i.e. for any
neighbourhood U of o in X there exists m 2 N s.t. ↵

n

x 2 U for all n � m. In
particular, we can take U = {o} since it is itself open in the discrete topology.
Hence, ↵

m

x = o, which implies that x = o and so a contradiction.

Definition 2.1.5. Two t.v.s. X and Y over K are (topologically) isomorphic
if there exists a vector space isomorphism X ! Y which is at the same time
a homeomorphism (i.e. bijective, linear, continuous and inverse continuous).

In analogy to Definition 1.2.3, let us collect here the corresponding termi-
nology for mappings between two t.v.s..

Definition 2.1.6. Let X and Y be two t.v.s. on K.
• A topological homomorphism f from X to Y is a continuous linear
mapping which is also open, i.e. every open set in X is mapped to an
open set in f(X) (endowed with the subset topology induced by Y ).

• A topological monomorphism from X to Y is an injective topological
homomorphism.

• A topological isomorphism from X to Y is a bijective topological homo-
morphism.

• A topological automorphism of X is a topological isomorphism from X
into itself.

Proposition 2.1.7. Given a t.v.s. X, we have that:
1. For any x0 2 X, the mapping x 7! x + x0 ( translation by x0) is a

homeomorphism of X onto itself.
2. For any 0 6= � 2 K, the mapping x 7! �x (dilation by �) is a topological

automorphism of X.
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2.1. Definition and main properties of a topological vector space

Proof. Both mappings are continuous as X is a t.v.s.. Moreover, they are
bijections by the vector space axioms and their inverses x 7! x � x0 and
x 7! 1

�

x are also continuous. Note that the second map is also linear so it is
a topological automorphism.

Proposition 2.1.7–1 shows that the topology of a t.v.s. is always a transla-
tion invariant topology, i.e. all translations are homeomorphisms. Note that
the translation invariance of a topology ⌧ on a vector space X is not su�cient
to conclude (X, ⌧) is a t.v.s..

Example 2.1.8. If a metric d on a vector space X is translation invariant,
i.e. d(x + z, y + z) = d(x, y) for all x, y, z 2 X (e.g. the metric induced
by a norm), then the topology induced by the metric is translation invariant
and the addition is always continuous. However, the multiplication by scalars
does not need to be necessarily continuous (take d to be the discrete metric,
then the topology generated by the metric is the discrete topology which is not
compatible with the scalar multiplication see Proposition 2.1.4).

The translation invariance of the topology of a t.v.s. means, roughly speak-
ing, that a t.v.s. X topologically looks about any point as it does about any
other point. More precisely:

Corollary 2.1.9. The filter F(x) of neighbourhoods of x in a t.v.s. X coin-
cides with the family of the sets O+x for all O 2 F(o), where F(o) is the filter
of neighbourhoods of the origin o (i.e. neutral element of the vector addition).

Proof. (Exercise Sheet 1)

Thus the topology of a t.v.s. is completely determined by the filter of
neighbourhoods of any of its points, in particular by the filter of neighbour-
hoods of the origin o or, more frequently, by a base of neighbourhoods of the
origin o. Therefore, we need some criteria on a filter of a vector space X
which ensures that it is the filter of neighbourhoods of the origin w.r.t. some
topology compatible with the vector structure of X.

Theorem 2.1.10. A filter F of a vector space X over K is the filter of
neighbourhoods of the origin w.r.t. some topology compatible with the vector
structure of X if and only if

1. The origin belongs to every set U 2 F
2. 8U 2 F , 9V 2 F s.t. V + V ⇢ U

3. 8U 2 F , 8� 2 K with � 6= 0 we have �U 2 F
4. 8U 2 F , U is absorbing.
5. 8U 2 F , 9V 2 F balanced s.t. V ⇢ U .
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2. Topological Vector Spaces

Before proving the theorem, let us fix some definitions and notations:

Definition 2.1.11. Let U be a subset of a vector space X.

1. U is absorbing (or radial) if 8x 2 X 9⇢ > 0 s.t. 8� 2 K with |�|  ⇢ we
have �x 2 U . Roughly speaking, we may say that a subset is absorbing
if it can be made by dilation to swallow every point of the whole space.

2. U is balanced (or circled) if 8x 2 U , 8� 2 K with |�|  1 we have
�x 2 U . Note that the line segment joining any point x of a balanced
set U to �x lies in U .

Clearly, o must belong to every absorbing or balanced set. The underlying
field can make a substantial di↵erence. For example, if we consider the closed
interval [�1, 1] ⇢ R then this is a balanced subset of C as real vector space,
but if we take C as complex vector space then it is not balanced. Indeed, if
we take i 2 C we get that i1 = i /2 [�1, 1].

Examples 2.1.12.

a) In a normed space the unit balls centered at the origin are absorbing and
balanced.

b) The unit ball B centered at (12 , 0) 2 R2 is absorbing but not balanced in the
real vector space R2. Indeed, B is a neighbourhood of the origin and so
by Theorem 2.1.10-4 is absorbing. However, B is not balanced because for
example if we take x = (1, 0) 2 B and � = �1 then �x /2 B.

c) In the real vector space R2 endowed with the euclidean topology, the subset
in Figure 2.1 is absorbing and the one in Figure 2.2 is balanced.

Figure 2.1: Absorbing Figure 2.2: Balanced

d) The polynomials R[x] are a balanced but not absorbing subset of the real
space C([0, 1],R) of continuous real valued functions on [0, 1]. Indeed, any
multiple of a polynomial is still a polynomial but not every continuous
function can be written as multiple of a polynomial.
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2.1. Definition and main properties of a topological vector space

e) The subset A := {(z1, z2) 2 C2 : |z1|  |z2|} of the complex space C2 en-
dowed with the euclidean topology is balanced but Å is not balanced. Indeed,
8 (z1, z2) 2 A and 8� 2 C with |�|  1 we have that

|�z1| = |�||z1|  |�||z2| = |�z2|

i.e. �(z1, z2) 2 A. Hence, A is balanced. If we consider instead Å =
{(z1, z2) 2 C2 : |z1| < |z2|} then 8 (z1, z2) 2 Å and � = 0 we have that
�(z1, z2) = (0, 0) /2 Å. Hence, Å is not balanced.

Proposition 2.1.13.
a) If B is a balanced subset of a t.v.s. X then so is B̄.
b) If B is a balanced subset of a t.v.s. X and o 2 B̊ then B̊ is balanced.

Proof. (Exercise Sheet 1)
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