
2. Topological Vector Spaces

This definition agrees with the usual one if the topology of X is defined
by a translation-invariant metric d. Indeed, in this case, a basis of neigh-
bourhoods of the origin is given by all the open balls centered at the origin.
Therefore, {x

n

}
n2N is a Cauchy sequence in such (X, d) i↵ 8 " > 0, 9N 2 N :

x
m

� x
n

2 B
"

(o), 8m,n � N , i.e. d(x
m

, x
n

) = d(x
m

� x
n

, o) < ".

By using the subsequences S
m

:= {x
n

2 S : n � m} of S, we can easily
rewrite (2.2) in the following way

8U 2 F(o) inX, 9N 2 N : S
N

� S
N

⇢ U. (2.3)

As we have already observed in Chapter 1, the collection B := {S
m

: m 2 N}
is a basis of the filter F

S

associated with the sequence S. This immediately
suggests what the definition of a Cauchy filter should be:

Definition 2.5.2. A filter F on a subset A of a t.v.s. X is said to be a Cauchy
filter if

8U 2 F(o) inX, 9M 2 F : M �M ⇢ U. (2.4)

In order to better illustrate this definition, let us come back to our refer-
ence example of a t.v.s. X whose topology is defined by a translation-invariant
metric d. For any subset M of (X, d), recall that the diameter of M is defined
as diam(M) := sup

x,y2M d(x, y). Now if F is a Cauchy filter on X then, by
definition, for any " > 0 there exists M 2 F s.t. M � M ⇢ B

"

(o) and this
simply means that diam(M)  ". Therefore, Definition 2.5.2 can be rephrased
in this case as follows:
a filter F on a subset A of such a metric t.v.s. X is a Cauchy filter if it
contains subsets of A of arbitrarily small diameter.

Going back to the general case, the following statement clearly holds.

Proposition 2.5.3.
The filter associated with a sequence of points in a t.v.s. is a Cauchy filter if
and only if the sequence itself is a Cauchy sequence.

Proof.
Suppose that S := (x

n

)
n2N is a sequence of points in a t.v.s. X and F

S

the
filter associated to it. Then S is a Cauchy sequence if and only if (2.3), which
is equivalent to (2.4) as the collection B := {S

m

: m 2 N} is a basis of the
filter F

S

. Hence, the conclusion holds.
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2.5. Completeness for t.v.s.

Proposition 2.5.4.
Let X be a t.v.s.. Then the following properties hold:
a) The filter of neighborhoods of a point x 2 X is a Cauchy filter on X.
b) A filter finer than a Cauchy filter is a Cauchy filter.
c) Every converging filter is a Cauchy filter.

Proof.
a) Let F(x) be the filter of neighborhoods of a point x 2 X and let U 2 F(o).

By Theorem 2.1.10, there exists V 2 F(o) such that V � V ⇢ U and
so such that (V + x) � (V + x) ⇢ U . Since X is a t.v.s., we know that
F(x) = F(o) + x and so M := V + x 2 F(x). Hence, we have proved that
for any U 2 F(o) there exists M 2 F(x) s.t. M �M ⇢ U , i.e. F(x) is a
Cauchy filter.

b) Let F and F 0 be two filters of subsets of X such that F is a Cauchy
filter and F ✓ F 0. Since F is a Cauchy filter, by Definition 2.5.2, for any
U 2 F(o) there exists M 2 F s.t. M �M ⇢ U . But F 0 is finer than F , so
M belongs also to F 0. Hence, F 0 is obviously a Cauchy filter.

c) If a filter F converges to a point x 2 X then F(x) ✓ F (see Defini-
tion 1.1.29). By a), F(x) is a Cauchy filter and so b) implies that F itself
is a Cauchy filter.

The converse of c) is in general false, in other words not every Cauchy
filter converges.

Definition 2.5.5.
A subset A of a t.v.s. X is said to be complete if every Cauchy filter on A
converges to a point x of A.

It is important to distinguish between completeness and sequentially com-
pleteness.

Definition 2.5.6.
A subset A of a t.v.s. X is said to be sequentially complete if any Cauchy
sequence in A converges to a point in A.

It is not hard to prove that complete always implies sequentially complete.
The converse is in general false (see Example 2.5.11). We will encounter an
important class of t.v.s. for which the two notions coincide (see Exercise
Sheet 3).
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2. Topological Vector Spaces

Proposition 2.5.7.
If a subset A of a t.v.s. X is complete then A is sequentially complete.

Proof.
Let S := {x

n

}
n2N a Cauchy sequence of points in A. Then Proposition 2.5.3

guarantees that the filter F
S

associated to S is a Cauchy filter in A. By the
completeness of A we get that there exists x 2 A such that F

S

converges to x.
This is equivalent to say that the sequence S is convergent to x 2 A (see
Proposition 1.1.31). Hence, A is sequentially complete.

Before showing an example of a subset of a t.v.s. which is sequentially
complete but not complete, let us introduce two useful properties about com-
pleteness in t.v.s..

Proposition 2.5.8.
a) In a Hausdor↵ t.v.s. X, any complete subset is closed.
b) In a complete t.v.s. X, any closed subset is complete.

In order to prove Proposition 2.5.8, we need two small lemmas regarding
convergence of filters in a topological space.

Lemma 2.5.9. Let F be a filter of a topological Hausdor↵ space X. If F
converges to x 2 X and also to y 2 X, then x = y.

Proof.
Suppose that x 6= y. Then, since X is Hausdor↵, there exists V 2 F(x) and
W 2 F(y) such that V \W = ;. On the other hand, we know by assumption
that F ! x and F ! y that is F(x) ✓ F and F(y) ✓ F (see Definition 1.1.29).
Hence, V,W 2 F . Since filters are closed under finite intersections, we get
that V \W 2 F and so ; 2 F which contradicts the fact that F is a filter.

Lemma 2.5.10. Let A be a subset of a topological space X. Then x 2 A if
and only if there exists a filter F of subsets of X such that A 2 F and F
converges to x.

Proof.
Let x 2 A, i.e. for any U 2 F(x) in X we have U \ A 6= ;. Set F := {F ✓
X|U \A ✓ F for some U 2 F(x)}. It is easy to see that F is a filter of subsets
of X. Therefore, for any U 2 F(x), U \ A 2 F and U \ A ✓ U imply that
U 2 F , i.e. F(x) ✓ F . Hence, F ! x.

Viceversa, suppose that F is a filter of X s.t. A 2 F and F converges to
x. Let U 2 F(x). Then U 2 F since F(x) ✓ F by definition of convergence.
Since also A 2 F by assumption, we get U \A 2 F and so U \A 6= ;.
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2.5. Completeness for t.v.s.

Proof. of Proposition 2.5.8
a) Let A be a complete subset of a Hausdor↵ t.v.s. X and let x 2 A. By

Lemma 2.5.10, x 2 A implies that there exists a filter F of subsets of X
s.t. A 2 F and F converges to x. Therefore, by Proposition 2.5.4-c), F is
a Cauchy filter. Consider now F

A

:= {U 2 F : U ✓ A} ⇢ F . It is easy to
see that F

A

is a Cauchy filter on A and so the completeness of A ensures
that F

A

converges to a point y 2 A. Hence, any nbhood V of y in A
belongs to F

A

and so to F . By definition of subset topology, this means
that for any nbhood U of y in X we have U \A 2 F and so U 2 F (since
F is a filter). Then F converges to y. Since X is Hausdor↵, Lemma 2.5.9
establishes the uniqueness of the limit point of F , i.e. x = y and so A = A.

b) Let A be a closed subset of a complete t.v.s. X and let F
A

be any Cauchy
filter on A. Take the filter F := {F ✓ X|B ✓ F for some B 2 F

A

}. It is
clear that F contains A and is finer than the Cauchy filter F

A

. Therefore,
by Proposition 2.5.4-b), F is also a Cauchy filter. Then the completeness
of the t.v.s. X gives that F converges to a point x 2 X, i.e. F(x) ✓ F .
By Lemma 2.5.10, this implies that actually x 2 A and, since A is closed,
that x 2 A. Now any neighbourhood of x 2 A in the subset topology is
of the form U \ A with U 2 F(x). Since F(x) ✓ F and A 2 F , we have
U \ A 2 F . Therefore, there exists B 2 F

A

s.t. B ✓ U \ A ⇢ A and so
U \A 2 F

A

. Hence, F
A

converges x 2 A, i.e. A is complete.

We are ready now for introducing the above mentioned example.

Example 2.5.11.

Let X :=
Q

i2J R with |J | > @0 endowed with the product topology given
by considering each copy of R equipped with the usual topology given by the
modulus. Note that X is a Hausdor↵ t.v.s. as it is product of Hausdor↵ t.v.s.
(see Exercise Sheet 2). Denote by H the subset of X consisting of all vectors
x = (x

i

)
i2J in X with only countably many non-zero coordinates x

i

.

Claim: H is sequentially complete but not complete.

Proof. of Claim.
Let us first make some observations on H.

• H is strictly contained in X.
Indeed, any vector y 2 X with all non-zero coordinates does not belong
to H because |J | > @0.
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2. Topological Vector Spaces

• H is dense in X.
In fact, let x = (x

i

)
i2J 2 X and U a neighbourhood of x in X. Then, by

definition of product topology on X, there exist U
i

✓ R s.t
Q

i2J Ui

✓ U
and U

i

is a neighbourhood of x
i

in R for all i 2 J with U
i

6= R for all
i 2 I where I ⇢ J s.t. |I| < 1. Take y := (y

i

)
i2J s.t. y

i

2 U
i

for all
i 2 J with y

i

6= 0 for all i 2 I and y
i

= 0 otherwise. Then clearly y 2 U
but also y 2 H because it has only finitely many non-zero coordinates.

Hence, U \H 6= ; and so H = X.
Now suppose that H is complete, then by Proposition 2.5.8-a) we have that
H is closed. Therefore, by the density of H in X, it follows that H = H = X
which contradicts the first of the properties above. Hence, H is not complete.

In the end, let us show that H is sequentially complete. Let (x
n

)
n2N a

Cauchy sequence of vectors x
n

= (x(i)
n

)
i2J in H. Then for each i 2 J we have

that the sequence of the i � th coordinates (x(i)
n

)
n2N is a Cauchy sequence

in R. By the completeness (i.e. the sequentially completeness) of R we have

that for each i 2 J , the sequence (x(i)
n

)
n2N converges to a point x(i) 2 R. Set

x := (x(i))
i2J . Then:

• x 2 H, because for each n 2 N only countably many x(i)
n

6= 0 and so
only countably many x(i) 6= 0.

• the sequence (x
n

)
n2N converges to x in H. In fact, for any U neigh-

bourhood of x in X there exist U
i

✓ R s.t
Q

i2J Ui

✓ U and U
i

is a
neighbourhood of x

i

in R for all i 2 J with U
i

6= R for all i 2 I where

I ⇢ J s.t. |I| < 1. Since for each i 2 J , the sequence (x(i)
n

)
n2N con-

verges to x(i) in R, we get that for each i 2 J there exists N
i

2 N s.t.

x(i)
n

2 U
i

for all n � N
i

. Take N := max
i2I Ni

(the max exists because I

is finite). Then for each i 2 J we get x(i)
n

2 U
i

for all n � N , i.e. x
n

2 U
for all n � N which proves the convergence of (x

n

)
n2N to x.

Hence, we have showed that every Cauchy sequence in H is convergent.

When a t.v.s. is not complete, it makes sense to ask if it is possible to em-
bed it in a complete one. The following theorem establishes a positive answer
to this question and the proof (see [4, Section 2.5, pp. 37–42], [8, Section 5,
41–48]) provides a procedure for associating to an arbitrary Hausdor↵ t.v.s.
X a complete Hausdor↵ t.v.s. X̂ called the completion of X.
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2.5. Completeness for t.v.s.

Theorem 2.5.12.
Let X be a Hausdor↵ t.v.s.. Then there exists a complete Hausdor↵ t.v.s. X̂
and a mapping i : X ! X̂ with the following properties:
a) The mapping i is a topological monomorphism.
b) The image of X under i is dense in X̂.
c) For every complete Hausdor↵ t.v.s. Y and for every continuous linear map

f : X ! Y , there is a continuous linear map f̂ : X̂ ! Y such that the
following diagram is commutative:

X Y

X̂

i

f

f̂

Furthermore:
I) Any other pair (X̂1, i1), consisting of a complete Hausdor↵ t.v.s. X̂1

and of a mapping i1 : X ! X̂1 such that properties (a) and (b) hold
substituting X̂ with X̂1 and i with i1, is topologically isomorphic to (X̂, i).
This means that there is a topological isomorphism j of X̂ onto X̂1 such
that the following diagram is commutative:

X X̂1

X̂

i

i1

j

II) Given Y and f as in property (c), the continuous linear map f̂ is unique.
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