
Chapter 4

Locally convex topological vector spaces

4.1 Definition by neighbourhoods

Let us start this section by briefly recalling some basic properties of convex
subsets of a vector space over K (where K is R or C).

Definition 4.1.1. A subset S of a vector space X over K is convex if, when-
ever S contains two points x and y, S also contains the segment of straight
line joining them, i.e.

8x, y 2 S, 8↵,� 2 R s.t. ↵,� � 0 and ↵+ � = 1,↵x+ �y 2 S.

Figure 4.1: Convex set Figure 4.2: Not convex set

Examples 4.1.2.

a) The convex subsets of R are simply the intervals of R. Examples of convex
subsets of R2 are simple regular polygons. The Platonic solids are convex
subsets of R3. Hyperplanes and halfspaces in Rn are convex.

b) Balls in a normed space are convex.
c) Consider a topological space X and the set C(X) of all real valued functions

defined and continuous on X. C(X) with the pointwise addition and scalar
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4. Locally convex topological vector spaces

multiplication of functions is a vector space. Fixed g 2 C(X), the subset
S := {f 2 C(X) : f(x) � g(x), 8x 2 X} is convex.

d) Consider the vector space R[x] of all polynomials in one variable with real
coe�cients. Fixed n 2 N and c 2 R \ {0}, the subset of all polynomials in
R[x] such that the coe�cient of the term of degree n is equal to c is convex.

Proposition 4.1.3.
Let X be a vector space over K. The following properties hold.

• ; and X are convex.
• Arbitrary intersections of convex sets are convex sets.
• Unions of convex sets are generally not convex.
• The sum of two convex sets is convex.
• The image and the preimage of a convex set under a linear map is convex.

Definition 4.1.4. Let S be any subset of a vector space X over K. We define
the convex hull of S, denoted by conv(S), to be the set of all finite convex
linear combinations of elements of S, i.e.

conv(S) :=

(
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Figure 4.3: The solid line is the border of the convex hull of the shaded set

Proposition 4.1.5.
Let S, T be arbitrary subsets of a vector space X over K. The following hold.
a) conv(S) is convex
b) S ✓ conv(S)
c) A set is convex if and only if it is equal to its own convex hull.
d) If S ✓ T then conv(S) ✓ conv(T )
e) conv(conv(S)) = conv(S).
f) conv(S + T ) = conv(S) + conv(T ).
g) The convex hull of S is the smallest convex set containing S, i.e. conv(S)

is the intersection of all convex sets containing S.
h) The convex hull of a balanced set is balanced

Proof. (Christmas Assignment)
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4.1. Definition by neighbourhoods

Definition 4.1.6. A subset S of a vector space X over K is absolutely convex
(abc) if it is convex and balanced.

Let us come back now to topological vector spaces.

Proposition 4.1.7. The closure and the interior of convex sets in a t.v.s. are
convex sets.

Before proving it, let us recall that given a continuous map f between two
topological spaces X and Y we have that f(A) ✓ f(A) for any A ✓ X.

Proof. Let S be a convex subset of a t.v.s. X. For any � 2 [0, 1], we define:

'
�

: X ⇥X ! X
(x, y) 7! �x+ (1� �)y

.

Note that each '
�

is continuous by the continuity of addition and scalar
multiplication in the t.v.s. X. Since S is convex, for any � 2 [0, 1] we have
that '

�

(S ⇥ S) ✓ S and so '
�

(S ⇥ S) ✓ S. The continuity of '
�

guarantees
that '

�

(S ⇥ S) ✓ '
�

(S ⇥ S). Hence, we can conclude that '
�

(S ⇥ S) =
'
�

(S ⇥ S) ✓ S, i.e. S is convex.
To prove the convexity of the interior S̊, we must show that for any two

points x, y 2 S̊ and for any � 2 [0, 1] the point z := '
�

(x, y) 2 S̊.
By definition of interior points of S, there exists a neighborhood U of

the origin in X such that x + U ✓ S and y + U ✓ S. Then we claim that
z + U ✓ S. This is indeed so, since for any element u 2 U we can write z + u
in the following form:

z + u = �x+ (1� �)y + �u+ (1� �)u = �(x+ u) + (1� �)(y + u)

and since both vectors x + u and y + u belong to S, so does z + u. Hence,
z + U ✓ S and so z 2 S̊, which proves the convexity of S̊.

Definition 4.1.8. A subset T of a t.v.s. is called a barrel or barrelled if T
has the following properties:

1. T is absorbing
2. T is absolutely convex
3. T is closed

Proposition 4.1.9. Every neighborhood of the origin in a t.v.s. is contained
in a neighborhood of the origin which is a barrel.
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4. Locally convex topological vector spaces

Proof.
Let U be a neighbourhood of the origin and define

T (U) := conv

 

B(U)

!

, where B(U) :=
[

�2K,|�|1

�U.

Clearly, U ✓ T (U). Therefore, T (U) is a neighbourhood of the origin and so
it is absorbing by Theorem 2.1.10-4). By construction, T (U) is also closed
and convex as closure of a convex set (see Proposition 4.1.7). To prove that
T (U) is a barrel it remains to show that it is balanced.

Now B(U) is balanced, because for any x 2 B(U) we have x 2 �U for some
� 2 K with |�|  1 and so µx 2 µ�U 2 B(U) for all µ 2 K with |µ|  1. Then,
by Proposition 4.1.5-h) and Proposition 2.1.13-a), T (U) is also balanced.

Corollary 4.1.10. Every neighborhood of the origin in a t.v.s. is contained
in a neighborhood of the origin which is absolutely convex.

Note that the converse of Proposition 4.1.9 does not hold in any t.v.s..
Indeed, not every neighborhood of the origin contains another one which is
a barrel. This means that not every t.v.s. has a basis of neighbourhoods
consisting of barrels. However, this is true for any locally convex t.v.s.

Definition 4.1.11. A t.v.s. X is said to be locally convex (l.c.) if there is a
basis of neighborhoods of the origin in X consisting of convex sets.

Locally convex spaces are by far the most important class of t.v.s. and
we will present later on several examples of such t.v.s.. For the moment let
us focus on the properties of the filter of neighbourhoods of locally convex
spaces.

Proposition 4.1.12. A locally convex t.v.s. always has a basis of neighbour-
hoods of the origin consisting of open absorbing absolutely convex subsets.

Proof.
Let X be a locally convex t.v.s. and N a neighbourhood of the origin in X.
Since X is locally convex, there exists W convex neighbourhood of the origin
in X s.t. W ✓ N . Moreover, by Theorem 2.1.10-5, there exists U balanced
neighbourhood of the origin in X s.t. U ✓ W . Let us keep the notation of the
previous proposition B(U) :=

S

�2K,|�|1 �U . The balancedness of U implies
that U = B(U). Then, using that W is a convex set containing U , we get

O := conv(B(U)) = conv(U) ✓ W ✓ N
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4.1. Definition by neighbourhoods

and so O̊ ✓ N . Hence, the conclusion holds because O̊ is clearly an open
convex neigbourhood of the origin in X and it is also balanced by Proposi-
tion 2.1.13-b) since o 2 O̊ and O is balanced (by Proposition 4.1.5-h)).

Similarly, we get that

Proposition 4.1.13. A locally convex t.v.s. always has a basis of neighbour-
hoods of the origin consisting of barrels.

Proof.
Let X be a locally convex t.v.s. and N a neighbourhood of the origin in X.
We know that every t.v.s. has a basis of closed neighbourhoods of the origin
(see Corollary 2.1.14-a)). Then there exists V closed neighbourhood of the
origin in X s.t. V ✓ N . Since X is locally convex, then there exists W convex
neighbourhood of the origin in X s.t. W ✓ V . Moreover, by Theorem 2.1.10-
5), there exists U balanced neighbourhood of the origin in X s.t. U ✓ W .
Summing up we have: U ✓ W ✓ V ✓ N for some U,W, V neighbourhoods of
the origin s.t. U balanced, W convex and V closed. Let us keep the notation
of the previous proposition B(U) :=

S

�2K,|�|1 �U . The balancedness of U
implies that U = B(U). Then, using that W is a convex set containing U , we
get

conv(B(U)) = conv(U) ✓ W

Passing to the closures and using that V is closed, we get

T (U) = conv(U) ✓ W ✓ V = V ✓ N.

Hence, the conclusion holds because we have already showed in Proposi-
tion 4.1.9 that T (U) is a barrelled neighbourhood of the origin in X.

We can then characterize the class of locally convex t.v.s in terms of ab-
sorbing absolutely convex neighbourhoods of the origin.

Theorem 4.1.14. If X is a l.c. t.v.s. then there exists a basis B of neigh-
bourhoods of the origin consisting of absorbing absolutely convex subsets s.t.
a) 8U, V 2 B, 9W 2 B s.t. W ✓ U \ V
b) 8U 2 B, 8 ⇢ > 0, 9W 2 B s.t. W ✓ ⇢U
Conversely, if B is a collection of absorbing absolutely convex subsets of a vec-
tor space X s.t. a) and b) hold, then there exists a unique topology compatible
with the linear structure of X s.t. B is a basis of neighbourhoods of the origin
in X for this topology (which is necessarily locally convex).

Proof. (Christmas Assignment)
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4. Locally convex topological vector spaces

In particular, the collection M of all multiples ⇢U of an absorbing abso-
lutely convex subset U of a vector space X is a basis of neighborhoods of the
origin for a locally convex topology on X compatible with the linear structure
(this ceases to be true, in general, if we relax the conditions on U).

Proof. First of all, let us observe that for any ⇢ 2 K \ {0}, we have that ⇢U is
absorbing and absolutely convex since U has such properties.

For any A,B 2 M, there exist �, µ 2 K \ {0} s.t. A = �U and B = µU .
W.l.o.g. we can assume |�|  |µ| and so �

µ

U ✓ U , i.e. A ✓ B. Hence, a) and
b) in Theorem 4.1.14 are fulfilled since A \ B = A 2 M and, for any ⇢ 2 K,
⇢A = ⇢�U 2 M.

Therefore, Theorem 4.1.14 ensures that M is a basis of neighbourhoods of
the origin of a topology which makes X into a l.c. t.v.s..

4.2 Connection to seminorms

In applications it is often useful to define a locally convex space by means of a
system of seminorms. In this section we will investigate the relation between
locally convex t.v.s. and seminorms.

Definition 4.2.1. Let X be a vector space. A function p : X ! R is called a
seminorm if it satisfies the following conditions:

1. p is subadditive: 8x, y 2 X, p(x+ y)  p(x) + p(y).
2. p is positively homogeneous: 8x, y 2 X, 8� 2 K, p(�x) = |�|p(x).

Definition 4.2.2.
A seminorm p on a vector space X is a norm if p�1({0}) = {o} (i.e. if
p(x) = 0 implies x = o).

Proposition 4.2.3. Let p be a seminorm on a vector space X. Then the
following properties hold:

• p is symmetric.
• p(o) = 0.
• |p(x)� p(y)|  p(x� y), 8x, y 2 X.
• p(x) � 0, 8x 2 X.
• Ker(p) is a linear subspace of X.

Proof.

• The symmetry of p directly follows from the positive homogeneity of p.
Indeed, for any x 2 X we have

p(�x) = p(�1 · x) = |� 1|p(x) = p(x).
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4.2. Connection to seminorms

• Using again the positive homogeneity of p we get that p(o) = p(0 · x) =
0 · p(x) = 0.

• For any x, y 2 X, the subadditivity of p guarantees the following in-
equalities:

p(x) = p(x�y+y)  p(x�y)+p(y) and p(y) = p(y�x+x)  p(y�x)+p(x)

which establish the third property.
• The previous property directly gives the nonnegativity of p. In fact, for

any x 2 X we get

0  |p(x)� p(o)|  p(x� o) = p(x).

• Let x, y 2 Ker(p) and ↵,� 2 K. Then

p(↵x+ �y)  |↵|p(x) + |�|p(y) = 0

which implies,by the nonnegativity of p, that p(↵x + �y) = 0. Hence,
we have ↵x+ �y 2 Ker(p).

Examples 4.2.4.

a) Suppose X = Rn and let M be a linear subspace of X. Set for any x 2 X

q
M

(x) := inf
m2M

kx�mk

where k ·k is the Euclidean norm on Rn, i.e. q
M

(x) is the distance from the
point x to M in the usual sense. If dim(M) � 1 then q

M

is a seminorm and
not a norm (M is exactly the kernel of q

M

). When M = {o}, q
M

(·) = k ·k.

b) Let C(R) be the vector space of all real valued continuous functions on the
real line. For any bounded interval [a, b] with a, b 2 R and a < b, we define
for any f 2 C(R):

q[a,b](f) := sup
atb

|f(t)|.

q[a,b] is a seminorm but is never a norm because it might be that f(t) = 0
for all t 2 [a, b] (and so that q[a,b](f) = 0) but f 6⌘ 0. Other seminorms are
the following ones:

q(f) := |f(0)| and q
p

(f) :=

✓

Z

b

a

|f(t)|pdt
◆

1
p

for 1  p < 1.

Note that if 0 < p < 1 then q
p

is not subadditive and so it is not a seminorm
(see Christmas assignment).
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4. Locally convex topological vector spaces

c) Let X be a vector space on which is defined a nonnegative sesquilinear
Hermitian form B : X ⇥X ! K. Then the function

p
B

(x) := B(x, x)
1
2

is a seminorm. q
B

is a norm if and only if B is positive definite (i.e.
B(x, x) > 0, 8x 6= o).
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