Universität Konstanz Fachbereich Mathematik und Statistik Dr. Maria Infusino Patrick Michalski

TOPOLOGICAL VECTOR SPACES-WS 2018/19

Recap Sheet 1

This recap sheet aims at self-assessing your progress and to recap some of the definitions and concepts introduced in the previous lectures. You do **not** need to hand in solutions, but please try to answer as many questions as you can since this is a very good training in preparation of your final exam. Exceptionally, this sheet will be discussed on November 9th (Group A) and November 5th (Group B).

- 1) Give the definition of basis for a topology on a set and prove the following characterization:
 - **Proposition 1.** Let X be a set and let \mathcal{B} be a collection of subsets of X. \mathcal{B} is a basis for a topology τ on X iff the following both hold:
 - 1. \mathcal{B} covers X, i.e. $\forall x \in X$, $\exists B \in \mathcal{B}$ s.t. $x \in B$. In other words, $X = \bigcup_{B \in \mathcal{B}} B$.
 - 2. If $x \in B_1 \cap B_2$ for some $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.
- 2) Let \mathcal{B} be the collection of all intervals (a, b) in \mathbb{R} together with all the sets of the form (a, b) K, where $K := \{\frac{1}{n} : n \in \mathbb{N}\}$. Prove that \mathcal{B} is the basis for a topology on \mathbb{R} , which is usually called the K-topology on \mathbb{R} .
- 3) Recalling the definitions of filter and basis of a filter on a set, show the following statements.
 - a) Given a topological space (X, τ) and $x \in X$, the family $\mathcal{F}(x)$ of all neighbourhoods of x is a filter on X. Is every open set a neighbourhood? Is every neighbourhood an open set? Justify your answers!
 - b) Let $S := \{x_n\}_{n \in \mathbb{N}}$ be a sequence of points in a set X. Then the family $\mathcal{F} := \{A \subset X : |S \setminus A| < \infty\}$ is a filter and it is known as the *filter associated* to the sequence S. For each $m \in \mathbb{N}$, set $S_m := \{x_n \in S : n \ge m\}$. Then $\mathcal{B} := \{S_m : m \in \mathbb{N}\}$ is a basis for \mathcal{F} .
- 4) Establish which of the following topologies on \mathbb{R} are comparable and for each comparable pair say which one is finer.
 - τ_1 :=standard topology, whose basis is $\mathcal{B}_1 := \{(a, b) : a, b \in \mathbb{R} \text{ with } a < b\}$
 - $\tau_2 := K$ -topology, whose basis \mathcal{B}_2 is the one defined in Exercise 1 b)
 - $\tau_3 :=$ lower limit topology, whose basis is $\mathcal{B}_3 := \{[a, b) : a, b \in \mathbb{R} \text{ with } a < b\}$
- 5) Provide the definitions of closure and interior of a subset A of a topological space (X, τ) . Use them to prove that:
 - a) $x \in \overline{A}$ iff each neighbourhood of x has a nonempty intersection with A.
 - **b**) $x \in A$ iff if there exists a neighbourhood of x which entirely lies in A.
 - c) A is closed in X iff $A = \overline{A}$.
 - d) A is open in X iff $A = \mathring{A}$.
- 6) Recall the definition of dense subset of a topological space and give a characterization in terms of open sets. Do you know any example of topological spaces in which every non-empty subset is dense?
- 7) Recall the definition of convergent sequence in a topological space and show the following statements.
 - a) Let X be a set endowed with the discrete topology. Then the only convergent sequences in X are the ones that are eventually constant, that is, sequences $\{q_i\}_{i\in\mathbb{N}}$ of points in X such that $q_i = q$ for some $q \in X$ and for all $i \geq N$ for some $N \in \mathbb{N}$.
 - b) Let Y be a set endowed with the trivial topology. Then every sequence in Y converges to every point of Y.