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Abstract

In this article, we rigorously investigate the diffusive limit of a velocity-
discrete Boltzmann equation which is used in the lattice Boltzmann method
(LBM) to construct approximate solutions of the incompressible Navier-
Stokes equation. Our results apply to LBM collision operators with multi-
ple collision frequencies (generalized lattice Boltzmann) which include the
widely used BGK operators.
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1 Introduction

In this article, we are concerned with a velocity-discrete Boltzmann equation
in the diffusive scaling

%—i—%ci-Vfi:éJi(f), i=0,...,N, (1)
which arises in connection with a numerical method for the incompressible
Navier-Stokes equation, the so-called lattice Boltzmann method (LBM) [6, 8].
The system (1) describes the evolution of a hypothetical gas or liquid in which
the atoms can only travel with velocities from the discrete set V = {cg,...,en}.
The particle densities f; specify how many particles have the velocity ¢; € V at
time ¢t > 0 and position & € Q. While the left-hand side in (1) describes the
transport of the particles, the right-hand side models interaction of the particles
by collisions.
Before we specify details of the structure of V and J, let us briefly mention how
the lattice Boltzmann method is related to (1) (for more details, see [14, 15]).
Integrating (1) along characteristics, we find

At 1
fi(t + At,x + CiAt/é) = fi(t,a:) + / —QJZ(f)(t +s,x+ CZ'S/E) ds.
0 €

*FB Mathematik, Universitat Kaiserslautern, Erwin-Schrodingerstrafie, 67663 Kaiser-
slautern, Germany,(junk@mathematik.uni-k1.de).

IWR, Universitét Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany,
(yong.wen-an@iwr.uni-heidelberg.de).



Setting ¢ = Ax, At = eAx, and approximating the integral by the simple
rectangle rule with evaluation at the left point of the interval, we obtain

fit+ At,x + ¢;Ax) = fi(t,x) + J;(f)(t, x), (2)

which is exactly the lattice Boltzmann evolution. If the discrete velocity set V is
chosen in such a way that the set of all integer linear combinations forms a reg-
ular lattice X = {>, njc; : n; € Z}, then (1) is already completely discretized
if @ is restricted to Az X'. Under suitable conditions on the initial values for
(1), it turns out that the average w = ), ¢; f;/€ is an approximate solution of
the incompressible Navier-Stokes equation
: ou _

divu = 0, wn +u-Vu+ Vp=vAu, Uli—o = . (3)
This relation is usually justified by carrying out a formal Chapman-Enskog
expansion in € (see, e.g., [11]).
In this article, our aim is to give a rigorous justification of the relation between
the continuous version (1) of the lattice Boltzmann equation and the Navier-
Stokes equation (3). This is a classical subject on the diffusive limit of discrete
velocity kinetic equations [1, 3, 4, 5]. Our analysis will be in the spirit of
[9, 1, 2, 10, 3, 4, 5] but it differs from these results because we concentrate on
the collision operators which are used in the lattice Boltzmann method. Our
problem is also different from those in [23, 19, 25] because our limit system
consists of incompressible Navier-Stokes equations.
To fix ideas, we will work in a specific two-dimensional situation but the ideas
can be transfered to other models and three dimensions. The spatial domain 2
will be the unit torus (i.e. the unit square with periodic boundary conditions)
and the velocity set is chosen as in the D2Q9 model (nine velocities in two space

dimensions — see Fig. 1) where V = {c¢y,...,csg} with ¢g = 0 and
a = () e = (9 es= (') cs= (")
cs = (1) cs=(7') cr=(1) cs = (1)

Cgq Co Cs
C3 C1
Ccr Cq C3

Figure 1: Discrete velocities in the D2Q9 model

To simplify notation, we introduce the Euclidean vector space F of real valued
functions f : YV — R with the canonical scalar product

(f,9)=> flw)gw), fgeF.

vey



With the multiplication operators Vi,V @ F — F defined by (V;f)(v) =

vif(v), we can form the vector V. = (V1,V5)" and rewrite (1) as equation

for f(t,x,c;) = fi(t,x):

of 1 1
StV V=S50 (4)

The collision operator J : F — F is chosen as

J(f) = A = 1)

where A : F — F is a linear mapping (with properties specified in section 2)
and f°?: F — F is the so-called equilibrium distribution which we choose as
n [11]. It depends linearly on the average density p = (1, f) and quadratically
on the average momentum pu = (1, V' f)

FA) = FA (L) (LV )

with
FE(p,ui0) = (p+ 3pu - v + p(3u - v)2/2 — 3plul2/2) f*(v).

The function f* = F3%(1,0) is defined by

4/9, =0
[fei)=41/9, i=1,2,3,4
1/36, i=5,6,7,8.

In the following, we set p = 1. As initial data, we choose a small perturbation
of the function f*
flizo = F{*(L ew) + O(?) (5)

where @ : Q@ — R? is a smooth, divergence-free velocity field. The O(e?)-
term will be specified later to avoid initial-layers. We remark that in lat-
tice Boltzmann simulations, the initial value typically lacks this correction,
ie. fli=o = Fy%(1,en) but we postpone a careful investigation of the resulting
initial-layer effects to some future work.

With a careful analysis involving Hilbert expansions, we prove that the solution
f€ of the initial value problem (4), (5) has the property that u./e = (1, f€) /e
differs only by terms of order €2 from the solution w of the incompressible
Navier-Stokes equation (3) with a viscosity parameter v being related to an
eigenvalue of the operator A. This result is more precise (for our models) than
those in [1, 3, 4, 5]. See Theorem 4.1 (Section 4) for details.

2 Collision operator and stability structure

The idea to use collision operators of relaxation type J(f) = A(f¢(f)—f) in the
lattice Boltzmann approach goes back to [12, 20]. In the multiple-relaxation-
time (or generalized) lattice Boltzmann model [13], the operator A is set up
by specifying an orthonormal basis of F and assuming that A diagonalizes



in this basis. This approach has shown to be more flexible and stable [18]
than the widely used BGK collision operator, where A is a multiple of the
identity [21, 7]. In the following, we will adopt the multiple-relaxation-time
model where the linear operator A is essentially determined by certain algebraic
properties (which reflect physical symmetries and conservation): A should be
symmetric and positive semidefinite, it should commute with 90° rotations and
reflections, and the kernel should be generated by the functions p;(v) = 1,
p2(v) = vy, p3(v) = ve. Introducing rotation and reflection by the operators
(Rf)(v) = f(—va,v1), (Sf)(v) = f(—v1,v2), these properties can be written as

i (Af.g) = (f,Ag)
ii. AR=RA, AS=5A
iii. A is positive semidefinite
iv. {1,v1,vs2} generates the kernel of A

It is possible to completely characterize operators A which satisfy conditions
(i) to (iv). This investigation is easily carried out in an orthonormal basis
{q1,...,q9} of F related to eigenvectors of the rotation operator R and the
reflection operator S (up to the signs of gg, g7, gs this is the basis used in [13]):

1
QI(’U) = ga
U1 V2
V)= - v) = —,
Q2( ) \/6 Q3( ) \/6
2 2 2 2
V1V9 VY — v vy + 3vs — 4
Q4(’U) = T7 Q5(U) = %7 QG('U) = %7

(v) 3v1v§ —2v; (v) 32}%2}2 — 209
V)= ———, V)= ——————,
q7 2\/§ qs 2\/§

3 2
qo(v) = Sviv — v — v + 3

2
Introducing the orthogonal projectors (Q;f) = (f, ¢;) ¢i, we can write (the ma-
jority of) all operators satisfying (i) to (iv) in the form

9
A:Z)‘iQi7 )\1,)\2,)\320, )\7:)\87 )\4,...,A9 > 0. (6)
=1

For later use, we introduce the projection QQ = Zg’:l Q@; onto the kernel of A.
Note that

Qf=0 <= (L,f)=0, (LVf)=0. (7)
Since the remaining eigenvalues are strictly positive, we can define a pseudo
inverse of A using P=1—Q

AT L= (.A‘P(]:))il P.
Note that AT : F — F satisfies
QAT =ATQ=0, PAT=AtP=Al, AAt=P=AlA (8



Another important property of P,@, A, and AT is the preservation of even/odd
symmetry. The reason is that all these operators commute with double rotations
R? — the building block for the odd/even projections

1 1
Se= U+, So=5(—R)

(note that (Sef)(v) = (f(v) + f(-v))/2, and (Sof)(v) = (f(v) = f(=v))/2).

For example, we have
SeA = (A+ R2A)/2 = A(I + R?)/2 = AS,

so that A4 applied to some even function f (i.e. f = S.f) is again even: S, Af =
AS.f = Af. Similarly, one shows that P,Q, A, and A! commute with S, S,
and thus preserve odd/even symmetry.

Next, we consider the equilibrium distribution f¢(f) = Fy4((1, f),(1,V f))
which can be split into a linear and a quadratic part

FUL) = Fin(D) + Fouaa(F5 ) (9)

where

fin () = Fn (LA ALV, fruaa(£:9) = Frua((LV £) (1, Vg))

and

Fil(p,u) = (p+3u-V)[*,
Fiaa(t,w) = ((Bu - V)(Bw - V) /2 = 3u-w/2)f*

The functions Flzi, Fqg .q are constructed in such a way that

(LESA (p,w)) =p, (LVEL (p,w)) =u, (1,ViV;F(p,u )>:§5,~j (10)

lin\P 1in\P 1in\P

and
eq o eq _UWwj + ujw;
< (1, V)Fquad(u,w)> — (0,0), <1 VVFquad(u,w)> = ST )
Inspecting the definition of F qu a0 1t easily follows that
fquad(f g) SEf;gad(SOf7 SOQ)? fquad(f 0) - 0 (12)

Note that, in view of (7) and (10), we have Q(f°(f) — f) = 0 so that for any
>0, A(fUf)— f) = (Q/T+ A)(f°Uf) — f). Hence, if we choose Ay =

A9 = 1/7, we obtain the so-called BGK collision operator J(f) = (f(f ) / T
which is frequently used in LBM [21, 7, 8] and which will be covered by our
considerations.

Introducing the linear part of the collision operator

Alfin — 1), (13)



we can write
J(f) = Jof +Afgaealfs 1) (14)

We remark that the directional derivative of J at the point f € F in direction
h € F is given by
DJ(f)h = Joh +2Af uad(f, h). (15)

Finally, let us concentrate on the stability structure of equation (2). We observe
that (4) is a symmetric hyperbolic system. However, for stability reasons, we
require also some symmetry and definiteness properties of the right-hand side.
To achieve this, we need the following result.

Lemma 2.1

Let By be the positive definite multiplication operator Bof = f/f* and let A
be of the form (6) with A\¢ = Ag. Then there exist linear operators Py : F — F,
k=1,...,9 with adjoints P such that

9 9
P} Py, = 04, P; Py, By = ZP,ij, BoJo = — Z)\kP,ij. (16)
k=1 k=1

and
PJy=0, PJ(f)=0, 1=1,2,3. (17)

Proof: We first show that ByJy is a symmetric operator. To see this, we
introduce the orthogonal subspaces

Uy = span{qs}, Us = span{qs}, Us = span{qi,q6,qo}, Ur = span{qo, g3, q7, 43},

and note that 3f* = ¢1 —qgs+qo/2 € U, Vif* € Uz, and ByUy, C Uy. Moreover,
because of the assumption A\g = Ag, we have AU, C Uy. Using a subscript k£ on
f € F to denote the projection onto Uy, we find

FAUf) = f=—~fa—fs = (fo — (L, fo) f) — (fr = 3(L,V f7) - (V *)7).

Since

<f6_<17f6>fg7Q1>:07 <f7_3<17vf7>'(vf*)77Qi>:07 1=2,3

we conclude

Jof = =Xafa — Asfs — Ae(fo — (L, fo) f7) — M (fr =3 (L, V fr) -V f¥). (18)

To show symmetry of ByJy we recall that Uy, are invariant, orthogonal subspaces
of ByJy so that

7
(Bodof,9) = > (BoJofr: gk)
k=4

Thus, it remains to show that (BoJo fx, gx) are symmetric expressions in gj and
fr. For k = 4,5 this follows immediately from

1 1
(BoJo fr, gk) = =Mk (Bofk, gk) = — Ak <B02 fres B()29k> , k=45

6



For the other subspaces, we have with Byf* =1

1 1
(BoJofe: 96) = — A6 <302 f6730296> + X6 (1, f6) (1, 96)

and

1 1
(BoJofr,97) = =7 <Bo2 f7,30297> + X (LV f7)-(1,Vgr).

We remark that the eigenvectors and eigenvalues of Jy can easily be read off
from (18). Obvious eigenvectors are qq,...,qy9 with eigenvalues —A4, ..., —Ag.
The remaining three eigenvectors belong to the eigenvalue zero: f*, Vi f*, Vo f*.
Using the fact that
1 _1 _1 _1

B JoB,? = B, *ByJoB, *
is symmetric and has the same eigenvalues —\j, as the operator Jy, we can find
a basis of orthonormal eigenvectors r;. Using the corresponding orthogonal
projectors Ry f = (f,rk) rx, we have 22:1 Ry =1, and

9
1
BEJoBy* ==Y MR
k=1

O ol

1
Defining P, = Ry Bj, relations (16) follow immediately. Finally, to show (17),
we observe for i =1,2,3

1 1 9 1 1
P.Jo = RiB} JOB BE =—> MR;RyB{ = —\R;BE =0.
k=1

In view of (14)

PJ(f) = Pidof + PiAfpuoa(f. f) = PiAS 4o, f) = RBQAfuad(f,f)-

Since r; is, for ¢ = 1,2, 3, in the kernel of JOBfé, we have with suitable coeffi-
cients oy, 8;

1
:BOQ(O‘@""Bi V) = By oi + ;- V)L
so that with g = f_,, l (f, f) and the structure of the kernel of A



3 Formal asymptotic expansion

In this section, we generally assume that A is of the form (6) with Ay = A5 =
1/(3v) > 0 for some v > 0. To investigate the asymptotic behavior of initial
value problems for (4) in the limit ¢ — 0, we introduce a regular expansion
fe~ fo+efi + e fo+ ... with fo = f*. Plugging the expansion into (4) and
setting f,, = 0 for m < 0, we obtain in order ¥, k > —1

Ofk

a0 PV Vi = A fi(Feee) = ozt D0 Folaalfo fo) | =0, (19)

p+q=k+2

from which we can determine the expansion coefficients f;. First, we note that
in view of (7), (10), and (11),

QU (fiva) = frr2) =0, Qf g y(fa, fm) =0
Hence,

P(f5 (fre2) — frt2) = [ (fure) — froto, Pfotia(fns fm) = Fonaa(frs ),

so that an application of the pseudo inverse AT to (19), yields in view of (8) for
any k € Z

fo= £+ S0 I f) - (W’”w Vi ) (20)

ptq=k

We remark that (20) does not specify fr completely since fj also appears on
the right-hand side as argument of f;;1. Due to the structure of f;.!, we can also
say that (20) determines fj up to the moments py = (1, fi) and ug, = (1, V f).
To fix these remaining degrees of freedom, we apply @ to (19) which yields
QO fx +V - Vfry1) = 0. In view of (7), we can express this equation also in
terms of the moments pg, ui

)
aik + divag, =0, (21)
% 4 div (1, V @V fr1) = 0. (22)

Here, the symmetric tensor product a ® b is defined as the matrix with compo-
nents (a;b; + ajb;)/2 and the divergence is applied row-wise.
In order to carry out the expansion, the following result is crucial.

Lemma 3.1

Assume pap,—1)t=0 = 0, U2, |t=0 = 0 for m = 1,2, ---. Then the expansion coef-
ficients satisfy Se fo, = fom, and S, fom—1 = fom—1, i.e. fo, are even functions
and fo,—1 are odd functions for all m € Z. The moments po,, and ws,—1 are
solutions of the equation

Ougm—1
ot

with the divergence condition divwoy,_1 = —0ipom_o. In the case m = 1, we
have ¢; = 1 and G = 0. Otherwise, c9,,—1 = 2 and the source terms Go,,_1,
m > 1, depend only on derivatives of pg, ug with k < 2m — 1.

. 1
+ com—1 divug,—1 @ ug + gvmm =vAugy_1 + Gom—1 (23)



Proof: We prove the symmetry result by induction over m, where we add
the additional statement po,,+1 = 0 (which follows from S, fo,—1 = fom—1 once
the proof is carried out and therefore does need to be stated in the lemma).
The induction base m = 0 is quite simple because f_; = 0 is odd and fy = f*
is even. To show that p; = 0, we first exploit relation (20). Taking £ = 1 and
keeping in mind that f,, = 0 for m < 0 as well as (12) with fo = f* = S.f*, we
conclude fi = f;2(f1). In view of (10) and the fact that ug = (1,V f*) = 0,
(22) yields Vp1 = 0 so that p; is independent of x. Integrating (21) over the
unit torus €2, we thus get with the help of the divergence theorem

d
o _ —/ divus dx = 0.
dt Q

Since p; = 0 initially, we conclude that p; = 0 for all ¢ > 0 which completes
the base of induction.

The induction step starts with the observation that fo,,+1 is odd. This follows
from (20) with k& = 2m + 1 because all terms on the right-hand side are odd
functions: f;7 (fam41) is odd since pom+1 = 0 by induction assumption; all
quadratic terms f;gad(fp’ fq) vanish in view of (12) because if p+ ¢ =2m + 1
is odd, either p or ¢ has to be even so that S,f, = 0 or S, f, = 0; since fon,—1
is odd, the same holds for 0 fo,,—1 and the even symmetry of fs,, leads to odd
symmetry of V -V fo,,. The fact that A" preserves the symmetry thus shows
that fo,+1 is odd. Using similar arguments in the case k = 2m + 2 (note that
f;gad(fp, fq) is even according to (12)), we find that fa,,12 is even if and only
if w942 = 0. Thus, to finish the induction proof, it remains to show that
Ugmi2 = 0 and payy3 = 0.

Equation (20) with £ = 2m + 3 and the fact that fs, are even for n < m imply

Jom+s = fr(fom+3) + 2f§3ad(f2m+2, fi1) — AT <% +V. Vf2m+2> .

jl

ot

In view of (22), we multiply this equation with v;v; and apply (1,-). Using
(10), (11), and summation convention for the repeated indices k, [, we obtain

(1, ViVj famq3) =p27§+3 bij + (Uam+2)i(w1); + (U2m2);(w1);

 O(u2m2)k
31‘[

(LViVATBVYiS)) .

By direct calculation, one finds

1
e
1 j—
3

<ATV121,3V12f*> _ 3_1\5 _, <ATV121,3V22f*> .
1

35 =
_ L
vl

and <.ATVZ'Vj1, SVkV}f*> = 0 for all other choices of i, j, k and [. We conclude

)

(ATVP1,3V21) = , (AR

v,

<ATv1v21,3v1v2f*> v

)

. 1 .
div <1, Ve Vf2m+3> = ngQm_Hg + 2divugmyo ® up — VAu2m+2.

9



Using pom+1 = 0 from the previous step, we find with (21), (20) that pop,t3,
Uom+2 are obtained as solutions of the Oseen problem

3u2m+2
ot

div ugmy2 = 0, + 2divugmio ® ug + évpgm_;,_g, = VAu2m+2.
Since the initial data pomisli—0 and wom42|i—o are assumed to be zero, we
conclude that po,43 = 0, Uy, 2 = 0 is the unique solution of this problem (see
Lemma 5.1). This completes the induction.

Finally, let us derive the equation satisfied by ws,;,—1 and po,. The divergence
condition is an immediate consequence of (21). To evaluate (22), we note that
with (20) applied to k =2m and k =2m — 1

5(U2m71)

fom = pam f* + com—1fguaa(fom—1, f1) — o EAT(BVIVIF) + gomo1

where we have collected all terms involving fi with £k < 2m — 1 in

2m—2
Gom1 =Y fotoa(Frs Fom—t)
k=2
0 fom—o 0 fom-3
AT [ D2m=2 v T Zem=3 v,
A ( W2 YA < ety Vf2m2>>.

Introducing the field Ga,,,—1 = div (1,V ® Vga,—1), the result follows from
(22). ]

To determine wug,,—1 for m > 1 from (23), appropriate initial conditions are
needed. In view of (5), we take

u1(0,z) = u(x), Usm-1(0,2) =0, m=2,3,---. (24)

To determine po,, for m > 1 from (23) and thus the expansion, we recall (21)
and the periodicity of the data and impose

/ pam(t, ) dx = 0. (25)
Q

In addition, we remark that (23) is essentially an Oseen problem for the modified
velocity field

Uop—1 = Ugm—1 — VP, AP = —0;pam—2

which satisfies the incompressibility condition div @91 = 0.

By the above formal process, the expansion f. can be constructed completely.
However, we do not know how to show the convergence of the expansion. In-
stead, we are interested in truncated expansions of the form

fr=f4efi4+--+€ef

10



with r a positive integer and fj defined by (20) (setting fo = f*, f, = 0 for
p < 0), where the moments (uy, px+1) are either set to zero (if & is even) or taken
as solution of equation (23) with (24)-(25) (see the appendix for existence and
uniqueness results). Inserting the truncated expansion into (4), we find in order
¢® the left-hand side of (19) where now f, = 0 for p > r + 1. By construction of
f&, this expression vanishes exactly as long as £+ 2 < r + 1. Thus, f! satisfies

aaf + - V Vf’"——J(fr)—eR (26)
with
o 0 -
Re= v Vi Y AL )
pHg=r+2
af 27’
r+1
te| =5t Y Al f) | = 3 ET YD Al fo)-
ptq=r+3 k=r+2 p+q=k+2

The averages ul = (1,V fI) and pl = (1, fI') have expressions (because of

even/odd symmetry of the coefficients fy)
u' =eu; +Suz+ ..., pr=1+eps+eps+....

Note that, in view of (23) with m =1, (u1, p2/3) is the solution of the Navier-
Stokes equation (3).

To investigate the regularity of the truncated expansion, we introduce some no-
tation related to the Sobolev spaces H* with s a non-negative integer. L? = H°
is the space of square integrable (F- or F2-valued) functions on the unit torus
. Its norm is denoted by ||-||. For s > 0, H® is defined as the space of functions
which are in L? together with their distributional x-derivatives of order < s.
We use || - ||s to denote the norm. In addition, we use C(0,7; H®), AC(0,T; H®)
and L'(0,T; H*) to denote the Banach spaces of H®-valued continuous, (lo-
cally if T = +o00) absolutely continuous, and (locally if T' = +o00) L'-integrable
functions on the time interval [0, T'], respectively.

For simplicity, we consider only the case where r = 3. Furthermore, we will
often use the following well-known fact (see, e.g., [17]).

Lemma 3.2

Let s1,s2 be two non-negative integers and s3 = min{sy, s, 81 + s2 — 04} > 0
where 04 = |d/2]+1 = 2 for our two-dimensional case d = 2. Then the product
of functions from H*' and H®? is in H®3, i.e.

H*H*? C H*.
where the inclusion symbol C indicates the continuity of the embedding.

Lemma 3.3

Assume s > 2 and w € H*5 with diva = 0. Then f2 € C(0,00; H®), R3 €
L'(0,00; H®), and for every T' > 0, sup,< ||ul(t)||s = O(e) and fo | R3(t)||sdt =
O(1) as e — 0.

11



Proof: Since f3 = Zézo ek fr,ud = <1, Vf§> and

Ry = % LV Vfi+e (% — ATfjgad(f3,f3)> ;

it suffices to show that

flafZeC(()?OO;HS)v f3€AC(anO;HS)7

f1 € AC(0,00; H®) N L1(0, 00; H*H1). (27)

Note that fo = f* is independent of (¢,x) and thereby in C(0,00; H®). In
addition, Lemma 3.2 can be used to show that the quadratic term f;ga J(f3:.13)
is in C(0,00; H*) if so is f3. To show (27), we consider the equations for w1, pa,
and us, py.

Denote by II the orthogonal projection of L? onto its closed subspace consisting
of all solenoidal vectors. Then the equations for (ui, p2) can be rewritten as

Oy + H(’LL1 . Vul) =vAu,, ApQ = —3div (u1 . Vul),

u1(0,z) = u(z), /sz(t, x)dx = 0. (28)

Because w € H*T® with diva = 0, we deduce easily from the existence theory
in [22] for incompressible Navier-Stokes equations (see also the proof of Lemma
5.1) that

uy €AC(0,00; HST) N C(0, 00; H*5) N LY(0, 00; H*1Y), (29)
pa €LY(0, 00; H*T),
This implies that w; - Vuy € AC(0,00; H*T3), since
[0¢(ur - Vur)[ls+3 < CllOu [|syallulls+a + Cllwr s3] Orwr [|s44

due to Lemma 3.2. Thus, from the equations in (28) and the familiar fact
llp2ll2 < C||Apz|| we see that

pa € AC(0, 00; H5™) and duy € AC(0,00; H¥T2). (30)

Similarly, we have 9;(u1 - Vup) € AC(0, 00; H**1) and differentiating the equa-
tions in (28) with respect to ¢ gives

Dipa € AC(0,00; H*F?) and  92u; € AC(0,00; H®); (31)
moreover, 0Z(u; - Vuy) € AC(0,00; H*~1) and
82py € AC(0, 00; HY). (32)
Now (29) and (30) immediately give

fi=3uy - Vf* e AC(0,00; H*™) N LY(0, 00; H*1Y),
dif1 € AC(0,00; H2).

12



Recall that fo = pof* + £ (f1, f1) — AH(V - Vf). By using Lemma 3.2, it is

quad
easy to see from (29) and (30) that

0 (1, f1) EAC(0, 00; H**4) 1 C(0, 00; H ),

quad

8tf55ad(f1a fl) EAC(O’ 00; HS+2)_
Thus it follows from (29), (30), (33) and (31) that

fa € AC(0, 00; H*T3) N L1(0, 00; H*T),

34
By fo € AC(0, 00; HT). (34)

Next we turn to the equations for ug and py:
divug = —0;pa, Oyuz + 2divus ® ug + Vp4/3 =vAuz + Gs,

u3(0,x) =0, /9,04(75,33) dxz = 0.

Let ¢ be such that A¢ = —9;py and [, ¢(t, ) dx = 0. It follows from (30)-(32)
that

¢ € AC(0,00; H*) N L1 (0,00, H*MY), 049 € AC(0, 00; H*?).
Set w = u3 — V¢ and p = pyg/3 + 0r¢p + vdype. Then we have

divw = divug — A¢ = divug + dips = 0,

Ow+2divw @ u; + Vp = vAw + G3 — 2div (Vo ®@ uq), (35)

w(0,x) = —Ve(0,x) € H*3, / p(t,x) dx = 0.
0

This is the Oseen problem with an external force h = G3 — 2div (V¢ ® uq).
Recall that G5 = div (1,V ® Vg3) with

_ a0, T(%_ . >>
gs—A<at Voval (SLov.vp) ).

We see from (33)-(34) that h € AC(0,00; H®) N L(0, 00; H**2). Thus Lemma
5.1 gives

w € AC(0,00; H**) N 110,00 H**3),  p e L'(0,00; H*?).

On the other hand, w ® u; € AC(0,00; H*T!) follows from Lemma 3.2 and
(29). Taking divergence of (35) gives Ap = div(h — 2divw ® u;). Thus we
also have

p € AC(0,00; H5HL).

Recall that V¢ € AC(0,00; H573) N LY(0,00; H*?) and that 0;¢ + vd;ps €
AC(0,00; H572) N L1(0, 00; H**4). Then we have

uz =w+ Vo, pi)3=p— (0 +vdips) € AC(0,00; H*T1) N L0, 00; H5T3).

13



Together with (33) and (34), this gives

f3=3uz V- Al (% +V. Vf2> € AC(0,00; H¥1) N LY(0, 00; H513),
fo=paf*+2f0a(f1: f3)

—AT (% +V. Vf3> € AC(0,00; H*) N LY(0, 00; H¥T2).

Hence (27) is verified. ]

We conclude this section with a more detailed description of f3.

Lemma 3.4

The truncated expansion f2 coincides up to terms of order € with the Chapman-
Enskog distribution Feg(p, u) corresponding to the solution (u, p) of the Navier
Stokes equation (3),

Few(p.u) = F*(Lew) + & (39 = Guslul: (Vo V = [VE2)) 1

where Sj;[u] = &Bjui + Oy,u; is the viscous stress tensor and : denotes the
matrix scalar product A : B = Zij AijBij.

Proof: According to our construction, f3 = fo + ef1 + €2 fa + O(e?) with
fo=f* h=3u-Vf, fo=3pf +fil (f.fr) = A(V -V ).
Since fo + ef1 = F;L (1, eu) and € qegad(fl, fi) = F;gad(eu,eu), we thus have
£ = F{'(1eu) + E@pf* — AV - V1) + O(e).
An explicit calculation of AT(V -V f1) yields
ANV V) =Vu: AIBV V) =0wVu: (VoV - |V|?/2)f"

Since v®w — |v|?/2 is a symmetric matrix, we can replace the Jacobian Vu also
by its symmetric part (Vu + Vu”)/2 = S[u]/2 without changing the matrix
scalar product. This completes the proof. [ |

4 Justification of formal approximations

Having constructed formal asymptotic approximations f! for initial-value prob-
lems of (4), we prove in this section the validity of the approximations. The
main result is

14



Theorem 4.1

Suppose s > 2 is an integer, w € H**5 with diva = 0, p is the solution of Ap =
—div (@ - Va) and [,pde =0, and Ty > 0 is any given finite number. Then
the lattice Boltzmann model (4), with A of the form (6), As = A5 = 1/(3v),
A6 = Ag, and initial data

[€li=0 = FY%(1,em) + € <3]7— guS[a] (Vv - \V|2/2)> I

has a unique solution f¢ € C(0,Ty; H®). Moreover, there exist ey = eo(Tp) > 0
and K = K(Tp) > 0 such that for all positive € < ¢

173 — fe@)lls < K, te0,Tp).

In particular, the velocity field u./e = (1, V f€) /e coincides with the solution
u of the Navier-Stokes equation (3) up to order €? and ({1, f¢) — 1)/(3¢?) with
the pressure p up to O(e):

lu—ucfels K, lp— (L f) = /B3], < Ke.

The proof of Theorem 4.1.

Since f€(0,-) € H® with s > d/2 = 1, by the local existence theory for IVPs
of symmetrizable hyperbolic systems (see [17]), there is a time interval [0, T] so
that (4) has a unique H ®-solution

feeC(o,T],H?).

Define
T. =sup{T >0: f e C(0,T],H*)}. (36)

Namely, [0,7¢) is the maximal time interval of H® existence. Thanks to the
convergence-stability lemma in [24, 25], it suffice to prove the error estimate
for ¢ € [0, min{Tp,T¢}). Indeed, once the estimate is proved, the lemma can be
used to show T, > Tj.
To this end, we compute from equations (4) and (26) that the error E = f3 — f¢
satisfies

9E 1 J(f2) = J(f)

4V .VE = Zc

-
ot € €2 + R

We differentiate this equation with V¢ (in «) for a multi-index « satisfying
la| < s to get with E, = V*F

OE, 1 1
"V -VE, = —JoEa + Fy + Ha,
o T 5J0Ea + Fa+ (37)

where

1 o € ap
Fo= 5V (J(f) = J(f) = hE),  Ha=eVRy

For the sake of clarity, we divide the following arguments into lemmas.
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Lemma 4.2
Under the conditions of Theorem 4.1, we have

d Pr1E.|? .
WP el < oo pa vyl + C )l

7 (BOEQ, E,) de +C
Here P = Zz: 4 Pr, and C denotes a generic constant.

Proof: Applying By to equation (37) as well as (-, F,) we find (using the fact
that By and ByV; are multiplication operators and thus self-adjoint)

d
10 1 0
557 (BoFa, Ea) + o Ezj B (BoViEo: Eo) )

1
:6_2 <BOJ0EOH Ea> + <B0Fa7Eoz> + <B0Ha7Eoz> .

Thanks to relations (16) and the fact that A1, Ao, A3 = 0, it follows that

(BoJoBa, Eao) ZAk PiEq, PiEo) < —Amin (Pr1Ea, PrrEa)
k=4

where Apin = min{\, : k = 4,...,9}. Setting P; = S3_, Py, (17) implies
PrF, =0. Thanks to (16), we have

)\min <PIIE047PIIE04>

9
(BoFy, Eq) Z P,F,, PE,) + Ce (F,, F,). (39)
k=4

2 €2
Finally,
(BoHa, Eq) < C|Eo||Hal.
Thus, integrating (38) with respect to & over €2, the result follows. [ |

The next Lemma is used to estimate F,,.

Lemma 4.3
Set A(t) = |E(t)||s/e = || f2(t) — f<(t)||s/e. Then we have under the conditions
of Theorem 4.1 for |a| < 's

elFa()l < C(L+ A@)IE@)]s- (40)
Proof: Observe

I =3¢ = 1B = [ (DIF6) - h) Bt
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and

with f(8) = f3+ (1 — 0)(f¢ — f2). From (15), the definition of Fquad’
Lemma 3.2, it follows that

I(DI(f(0) = Jo)Ells < Clu@)ls[[Ells, (@) = (1, V(6))

Since ||[u(0)]]s < |[udls + [|u¢ — ud||s < Ce+ Cel\, we obtain

1
IV (JU2) = I = BE) | < C [ (@) a8 |l < Celt + )] ..

Hence || F, || < €920 B, and (40) follows. m

Substituting (40) into the inequality in Lemma 4.2 yields

d

G | (BoEa o) da < OB IV Ryl + O+ ADEL. (41

Note that C™1 (E,, Ey) < (BoEq, Eo) < C (E,, E,). We integrate (41) from 0
to T with [0,7] C [0, min{7,,Tp}) to obtain

T T
|Ea(T) |2 < O + O / | Ea()[V Rs(t)dt + C / (14 A%) | E()]2dt.
0 0

Here we have used ||E(0)||s = O(¢?). Summing up this inequality for the multi-
index a with |a| < s, we get

T T
B2 < ¢ + / VB ]| B () ot + C / (14 A%) | ()] 2dt.
0 0

Denote by F(T') the square root of the right-hand side of the last inequality.
We have |[E(t)||s < F(t), F(0) = O(¢®) and

F(t)F'(t) = CE|E@)||s| Rs ()]s + C(1 + A E@)|2.
Moreover, we have

F'(t) < CE||Rs(t)||s + C(1+ AP F (). (42)

Recall from Lemma 3.3 that foo | R3(t)||sdt = O(1). We apply Gronwall’s
lemma to (42) to obtain

F(T) < Céexp [C /0 ! (1442 dt] . (43)
Since F' > ||E||s = €2\, it follows from (43) that
A(T) < Ceé®exp [C/OT (1+ A% dt} = ®(T). (44)
Thus,

'(t) = C(1+ A?)D(t) < CP(t) + CP3(1).
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Applying the nonlinear Gronwall-type inequality in [23] to the last inequality
yields
q)(t) S exp(CTo),

for ¢ € [0, min{T, Tp}) if we choose € so small that
d(0) = Ce® < e T,
Because of (44), there exists a constant ¢, independent of ¢, such that
AT)<c (45)

for any T € [0, min{T,,Tp}). Finally, the theorem is concluded from (43) with
(45) and ||E||s < F. This completes the proof of the theorem 4.1.

5 Appendix

Here we slightly modify a proof in [16] to formulate an existence theorem for
the Oseen problem
ou

divu = 0, E%—divu@ul%—Vp:VAu%—h,

(46)
u(0,z) = u(x), /Qp(t,a:) dz = 0.

in a periodic domain. Here wq, h,u are given functions which are periodic in
x, and divua = 0.

Lemma 5.1

Let m > 0 be an integer and T > 0 a real number. Assume u; € C(0,T; H5*t1)
with s > max{m,o4}, h € L'(0,T; H™) and @ € H™ with divaz = 0. Then
the Oseen problem (46) has a unique solution (u, p) satisfying

u €AC(0,T; H™ Y)Y nC(0,T; H™) N L*(0,T; H™ ),
p el (0, T; H™).

Proof: Denote by H]" the closed subspace of H™ consisting of all solenoidal
vectors. We decouple (46) as

d
4 Au=F(u,up) +Th(t),  u(0,z)=a(z),
dt
(47)
Ap = div(h — divu ® uy), /p(t,a:)daz:().
Q
Here A = —v A is a nonnegative self-adjoint operator in H; II is the orthogonal

projection of H™ onto H]'; and F' is a bilinear operator

F(u,up) = —IIdivu ® ug.
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We firstly show the existence of u. According to [16], it suffices to construct a
solution to the integral equation

u(t) = Gu(t) = e M+ /O t e~ A F(u, uy) + ITh]ds. (48)

To this end we shall use the method of contraction map.

For simplicity we write X,,, = C(0,7"; H™),Y,, = L'(0,T'; H™) and set Z =
X NYpa1. Here T" > 0 is to be determined later. For the norm in Z we
choose

lwllz = max{|lwllx,,, L [wly,..},

where L > 0 is also to be determined later.
Since II has norm one in any H™, we use Lemma 3.2 to obtain

1 (w, u1)[lm <[ dive @ wm
<C([lullml[Varlls + [[ulls[[Vallm)

<Cllullmrluillse1 = Cllullmir-

Thus, we have
[F(w,u1)ly,, < Clully,,- (49)

Next we compute Gu — Gw for u,w € Z. We have
t
Gu(t) — Gw(t) = / e VAR (u — w, uy)ds.
0

Since e *4 has norm one as an operator in H™, we conclude
1Gu — Gwl|x,, < [[F(u—w,u)ly, <Clu—-wly,,,. (50)

Since e ' has norm (nt)~'/2? as an operator from H™ to H™t! it follows
that |Gu — Gw||,,+1 is majorized by the convolution of || F(u — w,u1)||;, and
(mt)~1/2. Hence

|Gu — Guwly,,, < 2T"/m)"/*Cllu—wly,.,- (51)

We now take L = 2(T"/n)/2. Recalling the definition of | - ||z and comparing
(50) and (51), we thus obtain

|Gu — Gwl||z < CL||lu — w||z. (52)
A similar (and simpler) computation gives

T/
1GOl2 < B = [[af, + /0 1A (8) .

These results show that G maps Z into itself. Moreover, if T’ is sufficiently
small, we have C'L < 1.
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With such choices of 7" and L, G maps Z into Z. At the same time, we see
from (52) that G is a strict contraction map on Z. Therefore G has a unique
fixed point w in Z, which is a local solution of the integral equation (48).
Since T" depends only on |uy||s+1, the solution can be directly extended to
[0,T]. Moreover, from the equation in (47) and the estimate in (49) we see that
u € AC(0,T; H™ 1),

Finally, we turn to the Poisson equation in (47) for p. Since ||Vp]|| is a norm
equivalent to ||p||; in the closed subspace S C H':

S::{pele/Qp(a:)dw:0},

the Poisson equation has a unique solution p € S satisfying
[1pllmt1 < Clldiv (h = dive @ u1)|lm—1 < C([|Rllm + [[uillstallelm)-

Therefore p is in L'(0,T; H™+1). [
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