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Rigorous Navier-Stokes Limit of the Lattice

Boltzmann Equation
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Abstract

In this article, we rigorously investigate the diffusive limit of a velocity-
discrete Boltzmann equation which is used in the lattice Boltzmann method
(LBM) to construct approximate solutions of the incompressible Navier-
Stokes equation. Our results apply to LBM collision operators with multi-
ple collision frequencies (generalized lattice Boltzmann) which include the
widely used BGK operators.
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1 Introduction

In this article, we are concerned with a velocity-discrete Boltzmann equation
in the diffusive scaling

∂fi

∂t
+

1

ε
ci · ∇fi =

1

ε2
Ji(f), i = 0, . . . , N, (1)

which arises in connection with a numerical method for the incompressible
Navier-Stokes equation, the so-called lattice Boltzmann method (LBM) [6, 8].
The system (1) describes the evolution of a hypothetical gas or liquid in which
the atoms can only travel with velocities from the discrete set V = {c0, . . . , cN}.
The particle densities fi specify how many particles have the velocity ci ∈ V at
time t ≥ 0 and position x ∈ Ω. While the left-hand side in (1) describes the
transport of the particles, the right-hand side models interaction of the particles
by collisions.
Before we specify details of the structure of V and J , let us briefly mention how
the lattice Boltzmann method is related to (1) (for more details, see [14, 15]).
Integrating (1) along characteristics, we find

fi(t + ∆t,x + ci∆t/ε) = fi(t,x) +

∫ ∆t

0

1

ε2
Ji(f)(t + s,x + cis/ε) ds.
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Setting ε = ∆x,∆t = ε∆x, and approximating the integral by the simple
rectangle rule with evaluation at the left point of the interval, we obtain

fi(t + ∆t,x + ci∆x) = fi(t,x) + Ji(f)(t,x), (2)

which is exactly the lattice Boltzmann evolution. If the discrete velocity set V is
chosen in such a way that the set of all integer linear combinations forms a reg-
ular lattice X = {∑i nici : ni ∈ Z}, then (1) is already completely discretized
if x is restricted to ∆xX . Under suitable conditions on the initial values for
(1), it turns out that the average u =

∑

i cifi/ε is an approximate solution of
the incompressible Navier-Stokes equation

divu = 0,
∂u

∂t
+ u · ∇u + ∇p = ν∆u, u|t=0 = ū. (3)

This relation is usually justified by carrying out a formal Chapman-Enskog
expansion in ε (see, e.g., [11]).
In this article, our aim is to give a rigorous justification of the relation between
the continuous version (1) of the lattice Boltzmann equation and the Navier-
Stokes equation (3). This is a classical subject on the diffusive limit of discrete
velocity kinetic equations [1, 3, 4, 5]. Our analysis will be in the spirit of
[9, 1, 2, 10, 3, 4, 5] but it differs from these results because we concentrate on
the collision operators which are used in the lattice Boltzmann method. Our
problem is also different from those in [23, 19, 25] because our limit system
consists of incompressible Navier-Stokes equations.
To fix ideas, we will work in a specific two-dimensional situation but the ideas
can be transfered to other models and three dimensions. The spatial domain Ω
will be the unit torus (i.e. the unit square with periodic boundary conditions)
and the velocity set is chosen as in the D2Q9 model (nine velocities in two space
dimensions – see Fig. 1) where V = {c0, . . . , c8} with c0 = 0 and

c1 = ( 1
0 ) c2 = ( 0

1 ) c3 =
(

−1
0

)

c4 =
(

0
−1

)

c5 = ( 1
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1

)

c7 =
(

−1
−1

)

c8 =
(

1
−1

)
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Figure 1: Discrete velocities in the D2Q9 model

To simplify notation, we introduce the Euclidean vector space F of real valued
functions f : V → R with the canonical scalar product

〈f, g〉 =
∑

v∈V

f(v)g(v), f, g ∈ F .
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With the multiplication operators V1, V2 : F → F defined by (Vif)(v) =
vif(v), we can form the vector V = (V1, V2)

T and rewrite (1) as equation
for f(t,x, ci) = fi(t,x):

∂f

∂t
+

1

ε
V · ∇f =

1

ε2
J(f). (4)

The collision operator J : F → F is chosen as

J(f) = A(f eq(f) − f)

where A : F → F is a linear mapping (with properties specified in section 2)
and f eq : F → F is the so-called equilibrium distribution which we choose as
in [11]. It depends linearly on the average density ρ = 〈1, f〉 and quadratically
on the average momentum ρ̄u = 〈1,V f〉

f eq(f) = F eq
ρ̄ (〈1, f〉 , 〈1,V f〉)

with
F eq

ρ̄ (ρ,u;v) =
(

ρ + 3ρ̄u · v + ρ̄(3u · v)2/2 − 3ρ̄|u|2/2
)

f∗(v).

The function f ∗ = F eq
ρ̄ (1,0) is defined by

f∗(ci) =











4/9, i = 0

1/9, i = 1, 2, 3, 4

1/36, i = 5, 6, 7, 8.

In the following, we set ρ̄ = 1. As initial data, we choose a small perturbation
of the function f ∗

f |t=0 = F eq
1 (1, εū) + O(ε2) (5)

where ū : Ω → R
2 is a smooth, divergence-free velocity field. The O(ε2)-

term will be specified later to avoid initial-layers. We remark that in lat-
tice Boltzmann simulations, the initial value typically lacks this correction,
i.e. f |t=0 = F eq

1 (1, εū) but we postpone a careful investigation of the resulting
initial-layer effects to some future work.
With a careful analysis involving Hilbert expansions, we prove that the solution
f ε of the initial value problem (4), (5) has the property that uε/ε = 〈1, f ε〉 /ε
differs only by terms of order ε2 from the solution u of the incompressible
Navier-Stokes equation (3) with a viscosity parameter ν being related to an
eigenvalue of the operator A. This result is more precise (for our models) than
those in [1, 3, 4, 5]. See Theorem 4.1 (Section 4) for details.

2 Collision operator and stability structure

The idea to use collision operators of relaxation type J(f) = A(f eq(f)−f) in the
lattice Boltzmann approach goes back to [12, 20]. In the multiple-relaxation-
time (or generalized) lattice Boltzmann model [13], the operator A is set up
by specifying an orthonormal basis of F and assuming that A diagonalizes
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in this basis. This approach has shown to be more flexible and stable [18]
than the widely used BGK collision operator, where A is a multiple of the
identity [21, 7]. In the following, we will adopt the multiple-relaxation-time
model where the linear operator A is essentially determined by certain algebraic
properties (which reflect physical symmetries and conservation): A should be
symmetric and positive semidefinite, it should commute with 90◦ rotations and
reflections, and the kernel should be generated by the functions p1(v) = 1,
p2(v) = v1, p3(v) = v2. Introducing rotation and reflection by the operators
(Rf)(v) = f(−v2, v1), (Sf)(v) = f(−v1, v2), these properties can be written as

i. 〈Af, g〉 = 〈f,Ag〉

ii. AR = RA, AS = SA

iii. A is positive semidefinite

iv. {1, v1, v2} generates the kernel of A
It is possible to completely characterize operators A which satisfy conditions
(i) to (iv). This investigation is easily carried out in an orthonormal basis
{q1, . . . , q9} of F related to eigenvectors of the rotation operator R and the
reflection operator S (up to the signs of q6, q7, q8 this is the basis used in [13]):

q1(v) =
1

3
,

q2(v) =
v1√
6
, q3(v) =

v2√
6
,

q4(v) =
v1v2

2
, q5(v) =

v2
1 − v2

2

2
, q6(v) =

3v2
1 + 3v2

2 − 4

6
,

q7(v) =
3v1v

2
2 − 2v1

2
√

3
, q8(v) =

3v2
1v2 − 2v2

2
√

3
,

q9(v) =
3

2
v2
1v

2
2 − v2

1 − v2
2 +

2

3
.

Introducing the orthogonal projectors (Qif) = 〈f, qi〉 qi, we can write (the ma-
jority of) all operators satisfying (i) to (iv) in the form

A =

9
∑

i=1

λiQi, λ1, λ2, λ3 = 0, λ7 = λ8, λ4, . . . , λ9 > 0. (6)

For later use, we introduce the projection Q =
∑3

i=1 Qi onto the kernel of A.
Note that

Qf = 0 ⇐⇒ 〈1, f〉 = 0, 〈1,V f〉 = 0. (7)

Since the remaining eigenvalues are strictly positive, we can define a pseudo
inverse of A using P = I − Q

A† : =
(

A|P (F)

)−1
P.

Note that A† : F → F satisfies

QA† = A†Q = 0, PA† = A†P = A†, AA† = P = A†A. (8)
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Another important property of P,Q,A, and A† is the preservation of even/odd
symmetry. The reason is that all these operators commute with double rotations
R2 – the building block for the odd/even projections

Se =
1

2
(I + R2), So =

1

2
(I − R2)

(note that (Sef)(v) = (f(v) + f(−v))/2, and (Sof)(v) = (f(v) − f(−v))/2).
For example, we have

SeA = (A + R2A)/2 = A(I + R2)/2 = ASe

so that A applied to some even function f (i.e. f = Sef) is again even: SeAf =
ASef = Af . Similarly, one shows that P,Q,A, and A† commute with Se, So

and thus preserve odd/even symmetry.
Next, we consider the equilibrium distribution f eq(f) = F eq

1 (〈1, f〉 , 〈1,V f〉)
which can be split into a linear and a quadratic part

f eq(f) = f eq
lin(f) + f eq

quad(f, f) (9)

where

f eq
lin(f) = F eq

lin(〈1, f〉 , 〈1,V f〉), f eq
quad(f, g) = F eq

quad(〈1,V f〉 , 〈1,V g〉)

and

F eq
lin(ρ,u) = (ρ + 3u · V )f ∗,

F eq
quad(u,w) = ((3u · V )(3w · V )/2 − 3u · w/2)f ∗.

The functions F eq
lin, F eq

quad are constructed in such a way that

〈

1, F eq
lin(ρ,u)

〉

= ρ,
〈

1,V F eq
lin(ρ,u)

〉

= u,
〈

1, ViVjF
eq
lin(ρ,u)

〉

=
ρ

3
δij (10)

and

〈

1, (1,V )F eq
quad(u,w)

〉

= (0,0),
〈

1, ViVjF
eq
quad(u,w)

〉

=
uiwj + ujwi

2
. (11)

Inspecting the definition of F eq
quad, it easily follows that

f eq
quad(f, g) = Sef

eq
quad(Sof, Sog), f eq

quad(f, 0) = 0. (12)

Note that, in view of (7) and (10), we have Q(f eq(f) − f) = 0 so that for any
τ > 0, A(f eq(f)− f) = (Q/τ +A)(f eq(f)− f). Hence, if we choose λ4 = · · · =
λ9 = 1/τ , we obtain the so-called BGK collision operator J(f) = (f eq(f)−f)/τ
which is frequently used in LBM [21, 7, 8] and which will be covered by our
considerations.
Introducing the linear part of the collision operator

J0 = A(f eq
lin − I), (13)

5
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we can write
J(f) = J0f + Af eq

quad(f, f). (14)

We remark that the directional derivative of J at the point f ∈ F in direction
h ∈ F is given by

DJ(f)h = J0h + 2Af eq
quad(f, h). (15)

Finally, let us concentrate on the stability structure of equation (2). We observe
that (4) is a symmetric hyperbolic system. However, for stability reasons, we
require also some symmetry and definiteness properties of the right-hand side.
To achieve this, we need the following result.

Lemma 2.1

Let B0 be the positive definite multiplication operator B0f = f/f∗ and let A
be of the form (6) with λ6 = λ9. Then there exist linear operators Pk : F → F ,
k = 1, . . . , 9 with adjoints P ∗

k such that

P ∗
i Pk = δikP

∗
k Pk, B0 =

9
∑

k=1

P ∗
k Pk, B0J0 = −

9
∑

k=1

λkP
∗
k Pk. (16)

and
PiJ0 = 0, PiJ(f) = 0, i = 1, 2, 3. (17)

Proof: We first show that B0J0 is a symmetric operator. To see this, we
introduce the orthogonal subspaces

U4 = span{q4}, U5 = span{q5}, U6 = span{q1, q6, q9}, U7 = span{q2, q3, q7, q8},

and note that 3f ∗ = q1−q6 +q9/2 ∈ U6, Vif
∗ ∈ U7, and B0Uk ⊂ Uk. Moreover,

because of the assumption λ6 = λ9, we have AUk ⊂ Uk. Using a subscript k on
f ∈ F to denote the projection onto Uk, we find

f eq(f) − f = −f4 − f5 − (f6 − 〈1, f6〉 f∗
6 ) − (f7 − 3 〈1,V f7〉 · (V f∗)7).

Since

〈f6 − 〈1, f6〉 f∗
6 , q1〉 = 0, 〈f7 − 3 〈1,V f7〉 · (V f∗)7, qi〉 = 0, i = 2, 3

we conclude

J0f = −λ4f4 − λ5f5 − λ6(f6 − 〈1, f6〉 f∗) − λ7(f7 − 3 〈1,V f7〉 · V f∗). (18)

To show symmetry of B0J0 we recall that Uk are invariant, orthogonal subspaces
of B0J0 so that

〈B0J0f, g〉 =
7

∑

k=4

〈B0J0fk, gk〉 .

Thus, it remains to show that 〈B0J0fk, gk〉 are symmetric expressions in gk and
fk. For k = 4, 5 this follows immediately from

〈B0J0fk, gk〉 = −λk 〈B0fk, gk〉 = −λk

〈

B
1

2

0 fk, B
1

2

0 gk

〉

, k = 4, 5.

6
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For the other subspaces, we have with B0f
∗ = 1

〈B0J0f6, g6〉 = −λ6

〈

B
1

2

0 f6, B
1

2

0 g6

〉

+ λ6 〈1, f6〉 〈1, g6〉 ,

and

〈B0J0f7, g7〉 = −λ7

〈

B
1

2

0 f7, B
1

2

0 g7

〉

+ λ7 〈1,V f7〉 · 〈1,V g7〉 .

We remark that the eigenvectors and eigenvalues of J0 can easily be read off
from (18). Obvious eigenvectors are q4, . . . , q9 with eigenvalues −λ4, . . . ,−λ9.
The remaining three eigenvectors belong to the eigenvalue zero: f ∗, V1f

∗, V2f
∗.

Using the fact that

B
1

2

0 J0B
− 1

2

0 = B
− 1

2

0 B0J0B
− 1

2

0

is symmetric and has the same eigenvalues −λk as the operator J0, we can find
a basis of orthonormal eigenvectors rk. Using the corresponding orthogonal
projectors Rkf = 〈f, rk〉 rk, we have

∑9
k=1 Rk = I, and

B
1

2

0 J0B
− 1

2

0 = −
9

∑

k=1

λkRk.

Defining Pk = RkB
1

2

0 , relations (16) follow immediately. Finally, to show (17),
we observe for i = 1, 2, 3

PiJ0 = RiB
1

2

0 J0B
− 1

2

0 B
1

2

0 = −
9

∑

k=1

λkRiRkB
1

2

0 = −λiRiB
1

2

0 = 0.

In view of (14)

PiJ(f) = PiJ0f + PiAf eq
quad(f, f) = PiAf eq

quad(f, f) = RiB
1

2

0 Af eq
quad(f, f).

Since ri is, for i = 1, 2, 3, in the kernel of J0B
− 1

2 , we have with suitable coeffi-
cients αi,βi

ri = B
1

2

0 (αi + βi · V )f∗ = B
− 1

2

0 (αi + βi · V )1.

so that with g = f eq
quad(f, f) and the structure of the kernel of A

PiJ(f) =

〈

B
1

2

0 Ag,B
− 1

2

0 (αi + βi · V )1

〉

ri

= 〈(αi + βi · V )1,Ag〉 = 〈A(αi + βi · V )1, g〉 = 0.

7
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3 Formal asymptotic expansion

In this section, we generally assume that A is of the form (6) with λ4 = λ5 =
1/(3ν) > 0 for some ν > 0. To investigate the asymptotic behavior of initial
value problems for (4) in the limit ε → 0, we introduce a regular expansion
fε ∼ f0 + εf1 + ε2f2 + . . . with f0 = f∗. Plugging the expansion into (4) and
setting fm = 0 for m < 0, we obtain in order εk, k ≥ −1

∂fk

∂t
+ V · ∇fk+1 −A



f eq
lin(fk+2) − fk+2 +

∑

p+q=k+2

f eq
quad(fp, fq)



 = 0, (19)

from which we can determine the expansion coefficients fi. First, we note that
in view of (7), (10), and (11),

Q(f eq
lin(fk+2) − fk+2) = 0, Qf eq

quad(fn, fm) = 0.

Hence,

P (f eq
lin(fk+2) − fk+2) = f eq

lin(fk+2) − fk+2, P f eq
quad(fn, fm) = f eq

quad(fn, fm),

so that an application of the pseudo inverse A† to (19), yields in view of (8) for
any k ∈ Z

fk = f eq
lin(fk) +

∑

p+q=k

f eq
quad(fp, fq) −A†

(

∂fk−2

∂t
+ V · ∇fk−1

)

. (20)

We remark that (20) does not specify fk completely since fk also appears on
the right-hand side as argument of f eq

lin. Due to the structure of f eq
lin, we can also

say that (20) determines fk up to the moments ρk = 〈1, fk〉 and uk = 〈1,V fk〉.
To fix these remaining degrees of freedom, we apply Q to (19) which yields
Q(∂tfk + V · ∇fk+1) = 0. In view of (7), we can express this equation also in
terms of the moments ρk,uk

∂ρk

∂t
+ divuk+1 = 0, (21)

∂uk

∂t
+ div 〈1,V ⊗ V fk+1〉 = 0. (22)

Here, the symmetric tensor product a⊗b is defined as the matrix with compo-
nents (aibj + ajbi)/2 and the divergence is applied row-wise.
In order to carry out the expansion, the following result is crucial.

Lemma 3.1

Assume ρ2m−1|t=0 = 0,u2m|t=0 = 0 for m = 1, 2, · · · . Then the expansion coef-
ficients satisfy Sef2m = f2m, and Sof2m−1 = f2m−1, i.e. f2m are even functions
and f2m−1 are odd functions for all m ∈ Z. The moments ρ2m and u2m−1 are
solutions of the equation

∂u2m−1

∂t
+ c2m−1 divu2m−1 ⊗ u1 +

1

3
∇ρ2m = ν∆u2m−1 + G2m−1 (23)

with the divergence condition divu2m−1 = −∂tρ2m−2. In the case m = 1, we
have c1 = 1 and G1 = 0. Otherwise, c2m−1 = 2 and the source terms G2m−1,
m > 1, depend only on derivatives of ρk, uk with k < 2m − 1.

8
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Proof: We prove the symmetry result by induction over m, where we add
the additional statement ρ2m+1 = 0 (which follows from Sof2m−1 = f2m−1 once
the proof is carried out and therefore does need to be stated in the lemma).
The induction base m = 0 is quite simple because f−1 = 0 is odd and f0 = f∗

is even. To show that ρ1 = 0, we first exploit relation (20). Taking k = 1 and
keeping in mind that fm = 0 for m < 0 as well as (12) with f0 = f∗ = Sef

∗, we
conclude f1 = f eq

lin(f1). In view of (10) and the fact that u0 = 〈1,V f ∗〉 = 0,
(22) yields ∇ρ1 = 0 so that ρ1 is independent of x. Integrating (21) over the
unit torus Ω, we thus get with the help of the divergence theorem

|Ω|dρ1

dt
= −

∫

Ω
divu2 dx = 0.

Since ρ1 = 0 initially, we conclude that ρ1 = 0 for all t ≥ 0 which completes
the base of induction.
The induction step starts with the observation that f2m+1 is odd. This follows
from (20) with k = 2m + 1 because all terms on the right-hand side are odd
functions: f eq

lin(f2m+1) is odd since ρ2m+1 = 0 by induction assumption; all
quadratic terms f eq

quad(fp, fq) vanish in view of (12) because if p + q = 2m + 1
is odd, either p or q has to be even so that Sofq = 0 or Sofp = 0; since f2m−1

is odd, the same holds for ∂tf2m−1 and the even symmetry of f2m leads to odd
symmetry of V · ∇f2m. The fact that A† preserves the symmetry thus shows
that f2m+1 is odd. Using similar arguments in the case k = 2m + 2 (note that
f eq

quad(fp, fq) is even according to (12)), we find that f2m+2 is even if and only
if u2m+2 = 0. Thus, to finish the induction proof, it remains to show that
u2m+2 = 0 and ρ2m+3 = 0.
Equation (20) with k = 2m + 3 and the fact that f2n are even for n ≤ m imply

f2m+3 = f eq
lin(f2m+3) + 2f eq

quad(f2m+2, f1) −A†

(

∂f2m+1

∂t
+ V · ∇f2m+2

)

.

In view of (22), we multiply this equation with vivj and apply 〈1, ·〉. Using
(10), (11), and summation convention for the repeated indices k, l, we obtain

〈1, ViVjf2m+3〉 =
ρ2m+3

3
δij + (u2m+2)i(u1)j + (u2m+2)j(u1)i

− ∂(u2m+2)k
∂xl

〈

1, ViVjA†(3VkVlf
∗)

〉

.

By direct calculation, one finds

〈

A†V 2
1 1, 3V 2

1 f∗
〉

=
1

3λ5
= ν,

〈

A†V 2
1 1, 3V 2

2 f∗
〉

= − 1

3λ5
= −ν,

〈

A†V 2
2 1, 3V 2

1 f∗
〉

= − 1

3λ5
= −ν,

〈

A†V 2
2 1, 3V 2

2 f∗
〉

=
1

3λ5
= ν,

〈

A†V1V21, 3V1V2f
∗
〉

=
1

3λ4
= ν,

and
〈

A†ViVj1, 3VkVlf
∗
〉

= 0 for all other choices of i, j, k and l. We conclude

div 〈1,V ⊗ V f2m+3〉 =
1

3
∇ρ2m+3 + 2div u2m+2 ⊗ u1 − ν∆u2m+2.

9
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Using ρ2m+1 = 0 from the previous step, we find with (21), (20) that ρ2m+3,
u2m+2 are obtained as solutions of the Oseen problem

divu2m+2 = 0,
∂u2m+2

∂t
+ 2divu2m+2 ⊗ u1 +

1

3
∇ρ2m+3 = ν∆u2m+2.

Since the initial data ρ2m+3|t=0 and u2m+2|t=0 are assumed to be zero, we
conclude that ρ2m+3 = 0, u2m+2 = 0 is the unique solution of this problem (see
Lemma 5.1). This completes the induction.
Finally, let us derive the equation satisfied by u2m−1 and ρ2m. The divergence
condition is an immediate consequence of (21). To evaluate (22), we note that
with (20) applied to k = 2m and k = 2m − 1

f2m = ρ2mf∗ + c2m−1f
eq
quad(f2m−1, f1) −

∂(u2m−1)k
∂xl

A†(3VkVlf
∗) + g2m−1

where we have collected all terms involving fk with k < 2m − 1 in

g2m−1 =

2m−2
∑

k=2

f eq
quad(fk, f2m−k)

−A†

(

∂f2m−2

∂t
− V · ∇A†

(

∂f2m−3

∂t
− V · ∇f2m−2

))

.

Introducing the field G2m−1 = div 〈1,V ⊗ V g2m−1〉, the result follows from
(22).

To determine u2m−1 for m ≥ 1 from (23), appropriate initial conditions are
needed. In view of (5), we take

u1(0,x) = ū(x), u2m−1(0,x) = 0, m = 2, 3, · · · . (24)

To determine ρ2m for m ≥ 1 from (23) and thus the expansion, we recall (21)
and the periodicity of the data and impose

∫

Ω
ρ2m(t,x) dx = 0. (25)

In addition, we remark that (23) is essentially an Oseen problem for the modified
velocity field

ũ2m−1 = u2m−1 −∇Φ, ∆Φ = −∂tρ2m−2

which satisfies the incompressibility condition div ũ2m−1 = 0.
By the above formal process, the expansion fε can be constructed completely.
However, we do not know how to show the convergence of the expansion. In-
stead, we are interested in truncated expansions of the form

f r
ε = f∗ + εf1 + · · · + εr+1fr+1

10
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with r a positive integer and fk defined by (20) (setting f0 = f∗, fp = 0 for
p < 0), where the moments (uk, ρk+1) are either set to zero (if k is even) or taken
as solution of equation (23) with (24)-(25) (see the appendix for existence and
uniqueness results). Inserting the truncated expansion into (4), we find in order
εk the left-hand side of (19) where now fp = 0 for p > r+1. By construction of
fk, this expression vanishes exactly as long as k + 2 ≤ r + 1. Thus, f r

ε satisfies

∂f r
ε

∂t
+

1

ε
V · ∇f r

ε − 1

ε2
J(f r

ε ) = εrR̂r (26)

with

R̂r =
∂fr

∂t
+ V · ∇fr+1 −

∑

p+q=r+2

Af eq
quad(fp, fq)

+ ε





∂fr+1

∂t
−

∑

p+q=r+3

Af eq
quad(fp, fq)



 −
2r

∑

k=r+2

εk−r
∑

p+q=k+2

Af eq
quad(fp, fq).

The averages ur
ε = 〈1,V f r

ε 〉 and ρr
ε = 〈1, f r

ε 〉 have expressions (because of
even/odd symmetry of the coefficients fk)

ur
ε = εu1 + ε3u3 + . . . , ρr

ε = 1 + ε2ρ2 + ε4ρ4 + . . . .

Note that, in view of (23) with m = 1, (u1, ρ2/3) is the solution of the Navier-
Stokes equation (3).
To investigate the regularity of the truncated expansion, we introduce some no-
tation related to the Sobolev spaces H s with s a non-negative integer. L2 = H0

is the space of square integrable (F - or F 2-valued) functions on the unit torus
Ω. Its norm is denoted by ‖·‖. For s > 0, H s is defined as the space of functions
which are in L2 together with their distributional x-derivatives of order ≤ s.
We use ‖ · ‖s to denote the norm. In addition, we use C(0, T ;H s), AC(0, T ;Hs)
and L1(0, T ;Hs) to denote the Banach spaces of Hs-valued continuous, (lo-
cally if T = +∞) absolutely continuous, and (locally if T = +∞) L1-integrable
functions on the time interval [0, T ], respectively.
For simplicity, we consider only the case where r = 3. Furthermore, we will
often use the following well-known fact (see, e.g., [17]).

Lemma 3.2

Let s1, s2 be two non-negative integers and s3 = min{s1, s2, s1 + s2 − σd} ≥ 0
where σd = bd/2c+1 = 2 for our two-dimensional case d = 2. Then the product
of functions from Hs1 and Hs2 is in Hs3 , i.e.

Hs1Hs2 ⊂ Hs3 .

where the inclusion symbol ⊂ indicates the continuity of the embedding.

Lemma 3.3

Assume s ≥ 2 and ū ∈ Hs+5 with div ū = 0. Then f 3
ε ∈ C(0,∞;Hs), R̂3 ∈

L1(0,∞;Hs), and for every T > 0, supt≤T ‖u3
ε (t)‖s = O(ε) and

∫ T
0 ‖R̂3(t)‖sdt =

O(1) as ε → 0.

11
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Proof: Since f 3
ε =

∑4
k=0 εkfk,u

3
ε =

〈

1,V f3
ε

〉

and

R̂3 =
∂f3

∂t
+ V · ∇f4 + ε

(

∂f4

∂t
−A†f eq

quad(f3, f3)

)

,

it suffices to show that

f1, f2 ∈ C(0,∞;Hs), f3 ∈ AC(0,∞;Hs),
f4 ∈ AC(0,∞;Hs) ∩ L1(0,∞;Hs+1).

(27)

Note that f0 = f∗ is independent of (t,x) and thereby in C(0,∞;H s). In
addition, Lemma 3.2 can be used to show that the quadratic term f eq

quad(f3, f3)
is in C(0,∞;Hs) if so is f3. To show (27), we consider the equations for u1, ρ2,
and u3, ρ4.
Denote by Π the orthogonal projection of L2 onto its closed subspace consisting
of all solenoidal vectors. Then the equations for (u1, ρ2) can be rewritten as

∂tu1 + Π(u1 · ∇u1) = ν∆u1, ∆ρ2 = −3 div (u1 · ∇u1),

u1(0,x) = ū(x),

∫

Ω
ρ2(t,x) dx = 0.

(28)

Because ū ∈ Hs+5 with div ū = 0, we deduce easily from the existence theory
in [22] for incompressible Navier-Stokes equations (see also the proof of Lemma
5.1) that

u1 ∈AC(0,∞;Hs+4) ∩ C(0,∞;Hs+5) ∩ L1(0,∞;Hs+6),

ρ2 ∈L1(0,∞;Hs+6).
(29)

This implies that u1 · ∇u1 ∈ AC(0,∞;Hs+3), since

‖∂t(u1 · ∇u1)‖s+3 ≤ C‖∂tu1‖s+3‖u1‖s+4 + C‖u1‖s+3‖∂tu1‖s+4

due to Lemma 3.2. Thus, from the equations in (28) and the familiar fact
‖ρ2‖2 ≤ C‖∆ρ2‖ we see that

ρ2 ∈ AC(0,∞;Hs+4) and ∂tu1 ∈ AC(0,∞;Hs+2). (30)

Similarly, we have ∂t(u1 ·∇u1) ∈ AC(0,∞;Hs+1) and differentiating the equa-
tions in (28) with respect to t gives

∂tρ2 ∈ AC(0,∞;Hs+2) and ∂2
t u1 ∈ AC(0,∞;Hs); (31)

moreover, ∂2
t (u1 · ∇u1) ∈ AC(0,∞;Hs−1) and

∂2
t ρ2 ∈ AC(0,∞;Hs). (32)

Now (29) and (30) immediately give

f1 = 3u1 · V f∗ ∈ AC(0,∞;Hs+4) ∩ L1(0,∞;Hs+6),

∂tf1 ∈ AC(0,∞;Hs+2).
(33)

12
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Recall that f2 = ρ2f
∗ + f eq

quad(f1, f1) −A†(V · ∇f1). By using Lemma 3.2, it is
easy to see from (29) and (30) that

f eq
quad(f1, f1) ∈AC(0,∞;Hs+4) ∩ C(0,∞;Hs+5),

∂tf
eq
quad(f1, f1) ∈AC(0,∞;Hs+2).

Thus it follows from (29), (30), (33) and (31) that

f2 ∈ AC(0,∞;Hs+3) ∩ L1(0,∞;Hs+5),

∂tf2 ∈ AC(0,∞;Hs+1).
(34)

Next we turn to the equations for u3 and ρ4:

divu3 = −∂tρ2, ∂tu3 + 2div u3 ⊗ u1 + ∇ρ4/3 = ν∆u3 + G3,

u3(0,x) = 0,

∫

Ω
ρ4(t,x) dx = 0.

Let φ be such that ∆φ = −∂tρ2 and
∫

Ω φ(t,x) dx = 0. It follows from (30)-(32)
that

φ ∈ AC(0,∞;Hs+4) ∩ L1(0,∞;Hs+6), ∂tφ ∈ AC(0,∞;Hs+2).

Set w = u3 −∇φ and p = ρ4/3 + ∂tφ + ν∂tρ2. Then we have

divw = divu3 − ∆φ = divu3 + ∂tρ2 = 0,

∂tw + 2div w ⊗ u1 + ∇p = ν∆w + G3 − 2 div (∇φ ⊗ u1),

w(0,x) = −∇φ(0,x) ∈ Hs+3,

∫

Ω
p(t,x) dx = 0.

(35)

This is the Oseen problem with an external force h = G3 − 2 div (∇φ ⊗ u1).
Recall that G3 = div 〈1,V ⊗ V g3〉 with

g3 = −A†

(

∂f2

∂t
− V · ∇A†

(

∂f1

∂t
− V · ∇f2

))

.

We see from (33)-(34) that h ∈ AC(0,∞;H s) ∩ L1(0,∞;Hs+2). Thus Lemma
5.1 gives

w ∈ AC(0,∞;Hs+1) ∩ L1(0,∞;Hs+3), p ∈ L1(0,∞;Hs+3).

On the other hand, w ⊗ u1 ∈ AC(0,∞;Hs+1) follows from Lemma 3.2 and
(29). Taking divergence of (35) gives ∆p = div (h − 2 div w ⊗ u1). Thus we
also have

p ∈ AC(0,∞;Hs+1).

Recall that ∇φ ∈ AC(0,∞;Hs+3) ∩ L1(0,∞;Hs+5) and that ∂tφ + ν∂tρ2 ∈
AC(0,∞;Hs+2) ∩ L1(0,∞;Hs+4). Then we have

u3 = w + ∇φ, ρ4/3 = p − (∂tφ + ν∂tρ2) ∈ AC(0,∞;Hs+1) ∩ L1(0,∞;Hs+3).

13
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Together with (33) and (34), this gives

f3 = 3u3 · V f∗ −A†

(

∂f1

∂t
+ V · ∇f2

)

∈ AC(0,∞;Hs+1) ∩ L1(0,∞;Hs+3),

f4 = ρ4f
∗ +2f eq

quad(f1, f3)

−A†

(

∂f2

∂t
+ V · ∇f3

)

∈ AC(0,∞;Hs) ∩ L1(0,∞;Hs+2).

Hence (27) is verified.

We conclude this section with a more detailed description of f 3
ε .

Lemma 3.4

The truncated expansion f 3
ε coincides up to terms of order ε3 with the Chapman-

Enskog distribution FCE(p,u) corresponding to the solution (u, p) of the Navier
Stokes equation (3),

FCE(p,u) = F eq
1 (1, εu) + ε2

(

3p − 9

2
νS[u] : (V ⊗ V − |V |2/2)

)

f∗,

where Sij[u] = ∂xj
ui + ∂xi

uj is the viscous stress tensor and : denotes the
matrix scalar product A : B =

∑

ij AijBij .

Proof: According to our construction, f 3
ε = f0 + εf1 + ε2f2 + O(ε3) with

f0 = f∗, f1 = 3u · V f ∗, f2 = 3pf∗ + f eq
quad(f1, f1) −A†(V · ∇f1).

Since f0 + εf1 = F eq
lin(1, εu) and ε2f eq

quad(f1, f1) = F eq
quad(εu, εu), we thus have

f3
ε = F eq

1 (1, εu) + ε2(3pf∗ −A†(V · ∇f1) + O(ε3).

An explicit calculation of A†(V · ∇f1) yields

A†(V · ∇f1) = ∇u : A†(3V ⊗ V f ∗) = 9ν∇u : (V ⊗ V − |V |2/2)f∗.

Since v⊗v−|v|2/2 is a symmetric matrix, we can replace the Jacobian ∇u also
by its symmetric part (∇u + ∇uT )/2 = S[u]/2 without changing the matrix
scalar product. This completes the proof.

4 Justification of formal approximations

Having constructed formal asymptotic approximations f r
ε for initial-value prob-

lems of (4), we prove in this section the validity of the approximations. The
main result is

14
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Theorem 4.1

Suppose s ≥ 2 is an integer, ū ∈ Hs+5 with div ū = 0, p̄ is the solution of ∆p =
−div (ū · ∇ū) and

∫

Ω p dx = 0, and T0 > 0 is any given finite number. Then
the lattice Boltzmann model (4), with A of the form (6), λ4 = λ5 = 1/(3ν),
λ6 = λ9, and initial data

f ε|t=0 = F eq
1 (1, εū) + ε2

(

3p̄ − 9

2
νS[ū] : (V ⊗ V − |V |2/2)

)

f∗

has a unique solution f ε ∈ C(0, T0;H
s). Moreover, there exist ε0 = ε0(T0) > 0

and K = K(T0) > 0 such that for all positive ε < ε0

‖f3
ε (t) − f ε(t)‖s ≤ Kε3, t ∈ [0, T0].

In particular, the velocity field uε/ε = 〈1,V f ε〉 /ε coincides with the solution
u of the Navier-Stokes equation (3) up to order ε2 and (〈1, f ε〉 − 1)/(3ε2) with
the pressure p up to O(ε):

‖u − uε/ε‖s ≤ Kε2, ‖p − (〈1, f ε〉 − 1)/(3ε2)‖s ≤ Kε.

The proof of Theorem 4.1.
Since f ε(0, ·) ∈ Hs with s > d/2 = 1, by the local existence theory for IVPs
of symmetrizable hyperbolic systems (see [17]), there is a time interval [0, T ] so
that (4) has a unique Hs-solution

f ε ∈ C([0, T ],Hs).

Define
Tε = sup

{

T > 0 : f ε ∈ C([0, T ],Hs)
}

. (36)

Namely, [0, Tε) is the maximal time interval of Hs existence. Thanks to the
convergence-stability lemma in [24, 25], it suffice to prove the error estimate
for t ∈ [0,min{T0, Tε}). Indeed, once the estimate is proved, the lemma can be
used to show Tε > T0.
To this end, we compute from equations (4) and (26) that the error E = f 3

ε −f ε

satisfies

∂E

∂t
+

1

ε
V · ∇E =

J(f3
ε ) − J(f ε)

ε2
+ ε3R̂3.

We differentiate this equation with ∇α (in x) for a multi-index α satisfying
|α| ≤ s to get with Eα = ∇αE

∂Eα

∂t
+

1

ε
V · ∇Eα =

1

ε2
J0Eα + Fα + Hα, (37)

where

Fα =
1

ε2
∇α

(

J(f3
ε ) − J(f ε) − J0E

)

, Hα = ε3∇αR̂3

For the sake of clarity, we divide the following arguments into lemmas.

15
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Lemma 4.2

Under the conditions of Theorem 4.1, we have

d

dt

∫

Ω
〈B0Eα, Eα〉 dx + C

‖PIIEα‖2

ε2
≤ Cε3‖Eα‖‖∇αR̂3‖ + Cε2‖Fα‖2.

Here PII =
∑9

k=4 Pk, and C denotes a generic constant.

Proof: Applying B0 to equation (37) as well as 〈·, Eα〉 we find (using the fact
that B0 and B0Vj are multiplication operators and thus self-adjoint)

1

2

∂

∂t
〈B0Eα, Eα〉 +

1

2ε

d
∑

j=1

∂

∂xj
〈B0VjEα, Eα〉

=
1

ε2
〈B0J0Eα, Eα〉 + 〈B0Fα, Eα〉 + 〈B0Hα, Eα〉 .

(38)

Thanks to relations (16) and the fact that λ1, λ2, λ3 = 0, it follows that

〈B0J0Eα, Eα〉 = −
9

∑

k=4

λk 〈PkEα, PkEα〉 ≤ −λmin 〈PIIEα, PIIEα〉

where λmin = min{λk : k = 4, . . . , 9}. Setting PI =
∑3

k=1 Pk, (17) implies
PIFα ≡ 0. Thanks to (16), we have

〈B0Fα, Eα〉 =
9

∑

k=4

〈PkFα, PkEα〉 ≤
λmin

2

〈PIIEα, PIIEα〉
ε2

+ Cε2 〈Fα, Fα〉 . (39)

Finally,

〈B0Hα, Eα〉 ≤ C|Eα||Hα|.

Thus, integrating (38) with respect to x over Ω, the result follows.

The next Lemma is used to estimate Fα.

Lemma 4.3

Set 4(t) = ‖E(t)‖s/ε = ‖f3
ε (t)− f ε(t)‖s/ε. Then we have under the conditions

of Theorem 4.1 for |α| ≤ s

ε‖Fα(t)‖ ≤ C(1 + 4(t))‖E(t)‖s. (40)

Proof: Observe

J(f3
ε ) − J(f ε) − J0E =

∫ 1

0

(

DJ(f(θ)) − J0

)

E dθ

16
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with f(θ) = f 3
ε + (1 − θ)(f ε − f3

ε ). From (15), the definition of F eq
quad, and

Lemma 3.2, it follows that

‖(DJ(f(θ)) − J0)E‖s ≤ C‖u(θ)‖s‖E‖s, u(θ) = 〈1,V f(θ)〉

Since ‖u(θ)‖s ≤ ‖u3
ε‖s + ‖uε − u3

ε‖s ≤ Cε + Cε4, we obtain

‖∇α
(

J(f3
ε ) − J(f ε) − J0E

)

‖ ≤ C

∫ 1

0
‖u(θ)‖s dθ ‖E‖s ≤ Cε(1 + 4)‖E‖s.

Hence ‖Fα‖ ≤ C(1+4)
ε ‖E‖s and (40) follows.

Substituting (40) into the inequality in Lemma 4.2 yields

d

dt

∫

Ω
〈B0Eα, Eα〉 dx ≤ Cε3‖Eα‖‖∇αR̂3‖ + C(1 + 42)‖E‖2

s . (41)

Note that C−1 〈Eα, Eα〉 ≤ 〈B0Eα, Eα〉 ≤ C 〈Eα, Eα〉. We integrate (41) from 0
to T with [0, T ] ⊂ [0,min{Tε, T0}) to obtain

‖Eα(T )‖2 ≤ Cε6 + Cε3

∫ T

0
‖Eα(t)‖‖∇αR̂3(t)‖dt + C

∫ T

0

(

1 + 42
)

‖E(t)‖2
sdt.

Here we have used ‖E(0)‖s = O(ε3). Summing up this inequality for the multi-
index α with |α| ≤ s, we get

‖E(T )‖2
s ≤ Cε6 + Cε3

∫ T

0
‖E(t)‖s‖R̂3(t)‖sdt + C

∫ T

0

(

1 + 42
)

‖E(t)‖2
sdt.

Denote by F (T ) the square root of the right-hand side of the last inequality.
We have ‖E(t)‖s ≤ F (t), F (0) = O(ε3) and

F (t)F ′(t) = Cε3‖E(t)‖s‖R̂3(t)‖s + C(1 + 42)‖E(t)‖2
s .

Moreover, we have

F ′(t) ≤ Cε3‖R̂3(t)‖s + C(1 + 42)F (t). (42)

Recall from Lemma 3.3 that
∫ T0

0 ‖R̂3(t)‖sdt = O(1). We apply Gronwall’s
lemma to (42) to obtain

F (T ) ≤ Cε3 exp

[

C

∫ T

0

(

1 + 42
)

dt

]

. (43)

Since F ≥ ‖E‖s = ε4, it follows from (43) that

4(T ) ≤ Cε2 exp

[

C

∫ T

0

(

1 + 42
)

dt

]

≡ Φ(T ). (44)

Thus,

Φ′(t) = C(1 + 42)Φ(t) ≤ CΦ(t) + CΦ3(t).

17
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Applying the nonlinear Gronwall-type inequality in [23] to the last inequality
yields

Φ(t) ≤ exp(CT0),

for t ∈ [0,min{Tε, T0}) if we choose ε so small that

Φ(0) = Cε2 ≤ e−CT0 .

Because of (44), there exists a constant c, independent of ε, such that

4(T ) ≤ c (45)

for any T ∈ [0,min{Tε, T0}). Finally, the theorem is concluded from (43) with
(45) and ‖E‖s ≤ F . This completes the proof of the theorem 4.1.

5 Appendix

Here we slightly modify a proof in [16] to formulate an existence theorem for
the Oseen problem

divu = 0,
∂u

∂t
+ divu ⊗ u1 + ∇p = ν∆u + h,

u(0,x) = ū(x),

∫

Ω
p(t,x) dx = 0.

(46)

in a periodic domain. Here u1,h, ū are given functions which are periodic in
x, and div ū = 0.

Lemma 5.1

Let m ≥ 0 be an integer and T > 0 a real number. Assume u1 ∈ C(0, T ;Hs+1)
with s ≥ max{m,σd}, h ∈ L1(0, T ;Hm) and ū ∈ Hm with div ū = 0. Then
the Oseen problem (46) has a unique solution (u, p) satisfying

u ∈AC(0, T ;Hm−1) ∩ C(0, T ;Hm) ∩ L1(0, T ;Hm+1),

p ∈L1(0, T ;Hm+1).

Proof: Denote by Hm
σ the closed subspace of Hm consisting of all solenoidal

vectors. We decouple (46) as

du

dt
+ Au = F (u,u1) + Πh(t), u(0,x) = ū(x),

∆p = div (h − divu ⊗ u1),

∫

Ω
p(t,x) dx = 0.

(47)

Here A = −ν∆ is a nonnegative self-adjoint operator in Hσ; Π is the orthogonal
projection of Hm onto Hm

σ ; and F is a bilinear operator

F (u,u1) = −Πdivu ⊗ u1.

18
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We firstly show the existence of u. According to [16], it suffices to construct a
solution to the integral equation

u(t) ≡ Gu(t) = e−tAū +

∫ t

0
e−(t−s)A[F (u,u1) + Πh]ds. (48)

To this end we shall use the method of contraction map.
For simplicity we write Xm = C(0, T ′;Hm

σ ), Ym = L1(0, T ′;Hm
σ ) and set Z =

Xm ∩ Ym+1. Here T ′ > 0 is to be determined later. For the norm in Z we
choose

‖w‖Z = max{‖w‖Xm
, L−1‖w‖Ym+1

},

where L > 0 is also to be determined later.
Since Π has norm one in any Hm, we use Lemma 3.2 to obtain

‖F (u,u1)‖m ≤‖divu ⊗ u1‖m

≤C(‖u‖m‖∇u1‖s + ‖u1‖s‖∇u‖m)

≤C‖u‖m+1‖u1‖s+1 = C‖u‖m+1.

Thus, we have
‖F (u,u1)‖Ym

≤ C‖u‖Ym+1
. (49)

Next we compute Gu − Gw for u,w ∈ Z. We have

Gu(t) − Gw(t) =

∫ t

0
e−(t−s)AF (u − w,u1)ds.

Since e−tA has norm one as an operator in Hm, we conclude

‖Gu − Gw‖Xm
≤ ‖F (u − w,u1)‖Ym

≤ C‖u − w‖Ym+1
. (50)

Since e−tA has norm (πt)−1/2 as an operator from Hm to Hm+1, it follows
that ‖Gu − Gw‖m+1 is majorized by the convolution of ‖F (u − w,u1)‖m and
(πt)−1/2. Hence

‖Gu − Gw‖Ym+1
≤ 2(T ′/π)1/2C‖u − w‖Ym+1

. (51)

We now take L = 2(T ′/π)1/2. Recalling the definition of ‖ · ‖Z and comparing
(50) and (51), we thus obtain

‖Gu − Gw‖Z ≤ CL‖u − w‖Z . (52)

A similar (and simpler) computation gives

‖G0‖Z ≤ B ≡ ‖ū‖m +

∫ T ′

0
‖h(t)‖mdt.

These results show that G maps Z into itself. Moreover, if T ′ is sufficiently
small, we have CL < 1.
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With such choices of T ′ and L, G maps Z into Z. At the same time, we see
from (52) that G is a strict contraction map on Z. Therefore G has a unique
fixed point u in Z, which is a local solution of the integral equation (48).
Since T ′ depends only on ‖u1‖s+1, the solution can be directly extended to
[0, T ]. Moreover, from the equation in (47) and the estimate in (49) we see that
u ∈ AC(0, T ;Hm−1).
Finally, we turn to the Poisson equation in (47) for p. Since ‖∇p‖ is a norm
equivalent to ‖p‖1 in the closed subspace S ⊂ H1:

S :=

{

p ∈ H1 :

∫

Ω
p(x) dx = 0

}

,

the Poisson equation has a unique solution p ∈ S satisfying

‖p‖m+1 ≤ C‖div (h − divu ⊗ u1)‖m−1 ≤ C(‖h‖m + ‖u1‖s+1‖u‖m+1).

Therefore p is in L1(0, T ;Hm+1).
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