Übungsblatt 3 zur Zahlentheorie

Aufgabe 1. (Normdarstellung)

Beweise die folgende Verallgemeinerung von Satz 1.4.12: Sei $n=p_1^{e_1}\cdot\ldots\cdot p_r^{e_r}$ mit $p_i\in\mathbb{P}$ und $e_i>0$ für alle $i\in\{1,\ldots,r\}$. Dann sind äquivalent:

- (a) n ist in der Form $a^2 + 3b^2$ mit $a, b \in \mathbb{Z}$ darstellbar.
- (b) Gibt es ein $i \in \{1, ..., r\}$ mit $p_i \equiv 2 \pmod{3}$, so ist e_i gerade.

Hinweis zu (a) \Rightarrow (b): Behandle den Fall $p_i = 2$ gesondert und unterscheide gerade und ungerade.

Für $p_i > 2$ benutze $a^2 + 3b^2 \equiv 0 \pmod{p_i}$ und unterscheide, ob $b \equiv 0$ oder $b \not\equiv 0 \pmod{p_i}$ ist. Im zweiten Fall ist $-3 = -1 \cdot 3$ ein quadratischer Rest modulo p_i und man kann mit dem quadratischen Reziprozitätsgesetz und anderen Aussagen über das Legendre-Symbol einen Widerspruch erzeugen.

Aufgabe 2. (Einheitengruppen von euklidischen Ringen)

Zeige, dass einer der Ringe $\mathbb{Z}[\sqrt{d}]$ mit $d \in \{-2,2\}$ euklidisch ist (sie sind es beide, aber bei einem ist es einfach) und dass

- (a) $\mathbb{Z}[\sqrt{-2}]^{\times}$ endlich ist.
- (b) $\mathbb{Z}[\sqrt{2}]^{\times}$ unendlich ist.

Aufgabe 3. (Dirichlet, angewandt)

Seien $q_1, ..., q_r$ paarweise verschiedene ungerade Primzahlen und $e_1, ..., e_r \in \{-1, 1\}$. Zeige, dass die folgenden Mengen unendlich sind:

(a)
$$P_1 := \{ p \in \mathbb{P} \mid \forall i \in \{1, ..., r\} : \left(\frac{p}{q_i}\right) = e_i \}$$

(b)
$$P_2 := \{ p \in \mathbb{P} \mid \forall i \in \{1, ..., r\} : \left(\frac{q_i}{p}\right) = e_i \}$$

Hinweis: Finde jeweils eine unendliche Teilmenge.

Abgabe bis Mittwoch, den 4. Mai um 10:00 Uhr in die Zettelkästen neben F411.