Übungsblatt 9 zur Zahlentheorie

Aufgabe 1. (Einheiten und Ganzheitsringe)

Sei $d \in \mathbb{Z}$ quadratfrei und $K = \mathbb{Q}(\sqrt{d})$.

- (a) Zeige, dass \mathscr{O}_K^{\times} für d < 0 endlich ist und bestimme \mathscr{O}_K^{\times} explizit.
- (b) Zeige, dass $\mathbb{Z}[\sqrt{12}]$ und $\mathbb{Z}[\sqrt{13}]$ nicht faktoriell sind.

Hinweis: Auf Blatt 8 haben wir in Aufgabe 1 schon exemplarisch für d = -3 den Ganzheitsring eines quadratischen Zahlkörpers bestimmt. In den Übungsgruppen werden wir die Verallgemeinerung auf beliebige d besprechen. Daher darf Beispiel 3.1.5 ohne weitere Rechnung benutzt werden.

Aufgabe 2. (Matrizen über Hauptidealringen)

Sei R ein Hauptidealring. Für $n \in \mathbb{N}$ bezeichne $GL_n(R)$ die Menge der invertierbaren $n \times n$ -Matrizen über R. Zeige:

- (a) $GL_n(R) = \{ P \in R^{n \times n} \mid \det(P) \in R^{\times} \}.$
- (b) Für $A \in R^{m \times n}$ gibt es invertierbare Matrizen $P \in GL_m(R)$ und $Q \in GL_n(R)$ so, dass PAQ Diagonalgestalt hat.

Aufgabe 3. (Matrizen und Quotienten)

Seien R ein kommutativer Ring, $m, n \in \mathbb{N}$ und seien $A, S \in R^{m \times n}$, $P \in GL_m(R)$ und $Q \in GL_n(R)$ mit S = PAQ. Zeige:

- (a) Die Abbildung $R^m / \operatorname{im}(A) \to R^m / \operatorname{im}(S), \overline{x} \mapsto \overline{Px}$ ist ein Modulisomorphismus.
- (b) Ist *S* sogar eine Diagonalmatrix mit Einträgen $s_{11}, \ldots, s_{kk} \neq 0$ und 0 sonst, so gilt

$$R^m/\operatorname{im}(A) \cong R^{m-k} \times \prod_{i=1}^k (R/(s_{ii})).$$

Bemerkung. Man kann mit etwas mehr Aufwand in Aufgabe 2 sogar erreichen, dass *S* in Smithscher Normalform ist, d.h. dass die Diagonaleinträge eine aufsteigende Teilerkette bilden. Damit und mit Aufgabe 3 kann man einen alternativen Beweis des Struktursatzes für endlich erzeugte Moduln über Hauptidealringen führen.

Aufgabe 4. (Diskriminante von Gittern)

Sei K ein algebraischer Zahlkörper vom Grad n und G ein vollständiges Gitter von K mit Basis x_1, \ldots, x_n . Weiter sei $H \subseteq G$ ein vollständiges Gitter. Zeige:

(a) Die Diskriminante

$$\Delta(G) := \Delta_{K|\mathbb{O}}(x_1, \dots, x_n)$$

von G ist wohldefiniert, das heißt, sie hängt nicht von der Wahl der Basis x_1, \ldots, x_n von G ab.

(b) Der Index [G:H] der Untergruppe H von G ist endlich und es gilt

$$\Delta(H) = [G:H]^2 \Delta(G).$$

Abgabe bis Donnerstag, den 16. Juni um 10:00 Uhr in die Zettelkästen neben F411.