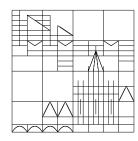
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. ROBERT DENK MARIO KAIP

26. November 2010



Analysis III 6. Übungsblatt

Aufgabe 6.1 Untersuchen Sie die folgenden Randwertprobleme auf Lösbarkeit und berechnen Sie gegebenenfalls die Lösungen.

- (i) y''(t) + y(t) = 0 für $t \in [0, \pi], y(0) = 1, y(\pi) = 1.$
- (ii) y''(t) + y(t) = 0 für $t \in [0, \pi], y(0) = 1, y(\pi) = -1.$
- (iii) $y''(t) + t^2 = 0$ für $t \in [0, 1], y(0) = 0, y'(1) = 0.$

Aufgabe 6.2 Seien $A:[0,\infty)\to\mathbb{C}^{n\times n}$ und $b:[0,\infty)\to\mathbb{C}^n$ jeweils stetig. Zeigen Sie nun:

- (i) Gibt es eine asymptotisch stabile Lösung des inhomogenen Systems x'(t) = A(t)x(t) + b(t), so ist die Nullfunktion asymptotisch stabile Lösung des zugehörigen homogenen Systems.
- (ii) Ist die Nullfunktion asymptotisch stabile Lösung des homogenen Systems, so konvergiert jede Lösung des homogenen Systems gegen Null für $t \to \infty$ und jede Lösung des inhomogenen Systems ist asymptotisch stabil.

Aufgabe 6.3 Es sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ stetig mit f(r)r > 0 für alle $r \neq 0$. Zeige Sie, dass die "gedämpfte" Schwingungsgleichung

$$y''(t) + f(y'(t)) + y(t) = 0$$

keine nichttriviale periodische Lösung besitzt.

Aufgabe 6.4 Zeigen Sie, dass es keine Funktion $x \in C^1(\mathbb{R}, \mathbb{R})$ mit

$$(1) x' = 1 + x^4$$

geben kann. Vergleichen Sie hierzu Lösungen von (1) mit Lösungen der Differentialgleichung $u'=1+u^2.$

Abgabetermin: Freitag 3. Dezember 2010, vor 10:00 Uhr in die Briefkästen bei F411.