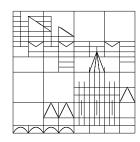
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. ROBERT DENK MARIO KAIP

10. Dezember 2010



Analysis III 8. Übungsblatt

Definition 8.1 Sei Ω eine Menge, dann heißt $\mu^* : \mathscr{P}(\Omega) \to [0, \infty]$ ein äußeres Maß auf Ω , wenn gilt:

- (i) $\mu^*(\emptyset) = 0$.
- (ii) Für alle $A, B \in \mathscr{P}(\Omega)$ mit $A \subseteq B$ gilt $\mu^*(A) \le \mu^*(B)$.
- (iii) Für alle $(A_n)_n \subset \mathscr{P}(\Omega)$ gilt $\mu^* (\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu^* (A_n)$.

Eine Menge $A \in \mathscr{P}(\Omega)$ heißt μ^* -messbar, wenn für alle $B \in \mathscr{P}(\Omega)$

$$\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c)$$

gilt.

Aufgabe 8.1 Sei $\Omega \neq \emptyset$ und $v : \mathscr{A} \to [0, \infty]$ eine Abbildung auf $\mathscr{A} \subset \mathscr{P}(\Omega)$, mit welcher man $\mu^* : \mathscr{P}(\Omega) \to [0, \infty]$ definiert durch

$$\mu^*(\emptyset) = 0, \quad \mu^*(A) := \begin{cases} \infty, & \text{falls kein } (A_n)_n \subset \mathscr{A} \text{ mit } A \subseteq \bigcup_{n=1}^\infty A_n \text{existiert} \\ \inf \left\{ \sum_{n=1}^\infty v(A_n) : (A_n)_n \subset \mathscr{A} \text{ mit } A \subseteq \bigcup_{n=1}^\infty A_n \right\}, \text{sonst.} \end{cases}$$

Zeigen Sie, dass μ^* ein äußeres Maß auf $\mathscr{P}(\Omega)$ ist. Man nennt dann μ^* das von v erzeugte äußere Maß.

Aufgabe 8.2 Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und μ^* das von μ erzeugt äußere Maß gemäß Aufgabe 8.1. Zeigen Sie nun:

- (i) Für alle $A \in \mathscr{P}(\Omega)$ gilt $\mu^*(A) = \inf\{\mu(B) : B \in \mathscr{A}, A \subset B\}$.
- (ii) Für alle $A \in \mathcal{P}(\Omega)$ gibt es sogar ein $C \in \mathcal{A}$ mit $A \subset C$ und $\mu^*(A) = \mu(C)$.

HINWEIS: Verwenden Sie die Aussage von Aufgabe 7.1(iv) der AII-Vorlesung.

Aufgabe 8.3 Sei $\Omega \neq \emptyset$ eine Menge und μ^* ein äußeres Maß darauf. Dazu definiert man

$$\sigma(\mu^*) := \{ A \in \mathscr{P}(\Omega) : A \text{ ist } \mu^*\text{-messbar} \}.$$

Zeigen Sie, dass $\sigma(\mu^*)$ eine Algebra ist und $\mu_{|\sigma(\mu^*)}^*$ ein Inhalt.

Aufgabe 8.4 Sei $(\mu_n)_{n\in\mathbb{N}}$ eine Folge von Maßen auf der σ -Algebra \mathscr{A} mit $\mu_n(A) \leq \mu_{n+1}(A)$ für alle $A \in \mathscr{A}$ und $n \in \mathbb{N}$. Man definiere

$$\mu: \mathscr{A} \to [0, \infty], \quad A \mapsto \lim_{n \to \infty} \mu_n(A).$$

Zeigen Sie, dass μ ein Maß auf \mathscr{A} ist.