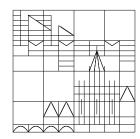
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. ROBERT DENK MARIO KAIP

28. Januar 2011



Analysis III 12. Übungsblatt

Aufgabe 12.1 Sei \mathfrak{M} die Menge aller Maße auf dem Messraum (X, \mathscr{A}) . Zeigen Sie nun:

(i) Definiert man für $\mu, \nu \in \mathfrak{M}$

$$\mu \sim \nu : \Leftrightarrow \mu \ll \nu \wedge \nu \ll \mu$$

so ist \sim eine Äquivalenzrelation auf \mathfrak{M} .

(ii) Sind $\mu, \nu \in \mathfrak{M}$ endliche Maße mit $\mu \sim \nu$, so gilt

$$0<rac{d
u}{d\mu}<\infty$$
 μ -f.ü..

HINWEIS: Zeigen Sie zunächst bei (ii) , dass $0<\frac{d\nu}{d\mu}$ (μ -f.ü.) und $0<\frac{d\mu}{d\nu}$ (ν -f.ü.) gilt.

Aufgabe 12.2 Beweisen Sie mit Mitteln der Vorlesung

$$\lim_{t \to \infty} \int_0^t \frac{1}{x} \sin(x) \, dx = \frac{\pi}{2}.$$

HINWEIS: Betrachten Sie das iterierte Integral $\int_0^t \int_0^\infty \sin(x) \cdot e^{-ux} du dx$.

Aufgabe 12.3 Man definiere die Funktion $g:(0,1] \to \mathbb{R}$ durch

$$g(x):=\frac{(-1)^n\cdot 2^n}{n}, \quad \text{ für } x\in \left(\frac{1}{2^n},\frac{1}{2^{n-1}}\right], \quad n\in \mathbb{N}.$$

- (i) Zeigen Sie $g \notin \mathcal{L}^1((0,1], \lambda)$.
- (ii) Zeigen Sie, dass das uneigentliche Integral

$$\int_0^1 g(x)dx := \lim_{\varepsilon \searrow 0} \int_{\varepsilon}^1 g(x)d\lambda(x)$$

existiert.

Aufgabe 12.4 Sei $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ ein C^1 -Diffeomorphismus und $M \subset \mathbb{R}^n$ eine Lebesguemessbare Menge. Zeigen Sie nun, dass $\Phi(M)$ auch Lebesgue-messbar ist.

HINWEIS: Zeigen Sie zunächst, dass für M eine Lebesgue-Nullmenge N und $B \in \mathcal{B}(\mathbb{R}^n)$ existieren mit $M = B \cup N$ und $B \cap N = \emptyset$ (Satz 1.23). Zeigen Sie dann unter Verwendung von Aufgabe 10.4, dass $\Phi(N)$ eine Lebesgue-Nullmenge ist.