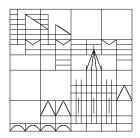
Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. ROBERT DENK KAIP, SAAL, SCHÖWE



Mathematische Grundlagen der Quantenmechanik 6. Übungsblatt

Aufgabe 6.1 (Langzeitasymptotik eines freien Teilchens) Zeigen Sie: Gilt in der Situation von Aufgabe 5.2 zusätzlich $[x \mapsto x^2 \psi(x)] \in L^2(\mathbb{R})$, so erhält man sogar

$$\left\| \exp\left(\frac{-itH}{\hbar}\right)\psi - \sqrt{\frac{m}{it\hbar}} \exp\left(\frac{im}{2t\hbar} \cdot ^2\right) (\mathscr{F}\psi) \left(\frac{m}{t\hbar} \cdot \right) \right\|_2 \leq \frac{2m}{\hbar} \frac{\|x^2\psi\|_2}{|t|}$$

für hinreichend großes |t|.

Aufgabe 6.2 Sei $u \in L_2(\mathbb{R})$ beliebig. Zeigen Sie, dass

$$\lim_{\alpha \to 1} \int_{\mathbb{R}} |u(\alpha x) - u(x)|^2 dx = 0$$

gilt.

Aufgabe 6.3 (Kompakt gestörte Operatoren) Seien \mathcal{H} ein Hilbertraum und A, B abgeschlossene dicht definierte Operatoren auf \mathcal{H} . Weiter sei A selbstadjungiert, A - B sei kompakt und $\lambda \in \sigma_c(A)$.

Zeigen Sie $\lambda \in \sigma_{ess}(B)$.

HINWEIS: Zeigen Sie die Existenz einer Weylschen Folge für λ bzgl. A und beweisen Sie, dass kompakte Operatoren schwach konvergente Folgen auf konvergente Folgen abbilden.

Aufgabe 6.4 Seien $T: \mathcal{H} \supset D(T) \to \mathcal{H}$ ein selbstadjungierter Operator auf dem Hilbertraum \mathcal{H} und $\lambda_0 \in \mathbb{C}$. Es existiere eine Folge $(\lambda_n)_n \subset \sigma(T) \setminus \{\lambda_0\}$ mit $\lambda_n \to \lambda_0$. Zeigen Sie, dass eine orthonormierte Folge $(\psi_n)_n \subset D(T)$ mit $(T - \lambda_0)\psi_n \to 0$ existiert.

HINWEIS: Betrachten Sie das Spektralmaß E zum Operator T und wähle für $\lambda_n \in \sigma_c(T)$ das Folgenglied ψ_n im Bild von $E(-\varepsilon + \lambda_0, \lambda_0 + \varepsilon)$ für $\varepsilon > 0$ geeignet.