Mixed Order Systems and Free Boundary Value Problems

Mario Kaip

Universität Konstanz

Summer Courses on Mathematical Fluid Dynamics
Darmstadt, July 07, 2011

Contents

(1) Introduction
(2) Bounded joint H^{∞}-calculus of $\nabla_{+}=\left(\partial_{t}, \partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)$
(3) Order functions and N -parabolicity
(4) Main result on mixed order systems
(5) Applications (Two-phase Navier Stokes)

What is a mixed order system?

Roughly speaking this is matrix valued function $(\lambda, \xi) \in \mathbb{C} \times \mathbb{C}^{n} \mapsto \mathscr{L}(\lambda, \xi) \in \mathbb{C}^{m \times m}$ (also called symbol) which enables us to define an operator of the form

$$
\begin{aligned}
\mathscr{L}\left(\partial_{t}, \nabla\right): \prod_{k=1}^{m} \mathbb{H}_{k} & \longrightarrow \prod_{k=1}^{m} \mathbb{F}_{k}, \\
\left(f_{1}, \ldots, f_{m}\right)^{T} & \mapsto
\end{aligned} \mathcal{L}^{-1} \mathscr{F}{ }^{-1} \mathscr{L}(\lambda, \xi) \mathscr{F} \mathcal{L}\left(f_{1}, \ldots, f_{m}\right)^{T} .
$$

where \mathbb{H}_{k} and \mathbb{F}_{k} are appropriate functions spaces as $H_{p}^{s}\left(\mathbb{R}_{+}, H_{p}^{r}\left(\mathbb{R}^{n}\right)\right)$.

What is a mixed order system?

Roughly speaking this is matrix valued function $(\lambda, \xi) \in \mathbb{C} \times \mathbb{C}^{n} \mapsto \mathscr{L}(\lambda, \xi) \in \mathbb{C}^{m \times m}$ (also called symbol) which enables us to define an operator of the form

$$
\begin{aligned}
& \mathscr{L}\left(\partial_{t}, \nabla\right): \prod_{k=1}^{m} \mathbb{H}_{k} \longrightarrow \prod_{k=1}^{m} \mathbb{F}_{k}, \\
&\left(f_{1}, \ldots, f_{m}\right)^{T} \mapsto \\
& \mathcal{L}^{-1} \mathscr{F}-1 \mathscr{L}(\lambda, \xi) \mathscr{F} \mathcal{L}\left(f_{1}, \ldots, f_{m}\right)^{T}
\end{aligned}
$$

where \mathbb{H}_{k} and \mathbb{F}_{k} are appropriate functions spaces as $H_{p}^{s}\left(\mathbb{R}_{+}, H_{p}^{r}\left(\mathbb{R}^{n}\right)\right)$.

It is natural to consider the following questions:

- Assumptions on \mathscr{L} to plug in $\left(\partial_{t}, \nabla\right)$?

What is a mixed order system?

Roughly speaking this is matrix valued function $(\lambda, \xi) \in \mathbb{C} \times \mathbb{C}^{n} \mapsto \mathscr{L}(\lambda, \xi) \in \mathbb{C}^{m \times m}$ (also called symbol) which enables us to define an operator of the form

$$
\begin{aligned}
& \mathscr{L}\left(\partial_{t}, \nabla\right): \prod_{k=1}^{m} \mathbb{H}_{k} \longrightarrow \prod_{k=1}^{m} \mathbb{F}_{k}, \\
&\left(f_{1}, \ldots, f_{m}\right)^{T} \mapsto \\
& \mathcal{L}^{-1} \mathscr{F}-1 \mathscr{L}(\lambda, \xi) \mathscr{F} \mathcal{L}\left(f_{1}, \ldots, f_{m}\right)^{T}
\end{aligned}
$$

where \mathbb{H}_{k} and \mathbb{F}_{k} are appropriate functions spaces as $H_{p}^{s}\left(\mathbb{R}_{+}, H_{p}^{r}\left(\mathbb{R}^{n}\right)\right)$.

It is natural to consider the following questions:

- Assumptions on \mathscr{L} to plug in $\left(\partial_{t}, \nabla\right)$?
- How to find spaces such that $\mathscr{L}\left(\partial_{t}, \nabla\right) \in L\left(\prod_{k=1}^{m} \mathbb{H}_{k}, \prod_{k=1}^{m} \mathbb{F}_{k}\right)$?

What is a mixed order system?

Roughly speaking this is matrix valued function $(\lambda, \xi) \in \mathbb{C} \times \mathbb{C}^{n} \mapsto \mathscr{L}(\lambda, \xi) \in \mathbb{C}^{m \times m}$ (also called symbol) which enables us to define an operator of the form

$$
\begin{aligned}
& \mathscr{L}\left(\partial_{t}, \nabla\right): \prod_{k=1}^{m} \mathbb{H}_{k} \longrightarrow \prod_{k=1}^{m} \mathbb{F}_{k}, \\
&\left(f_{1}, \ldots, f_{m}\right)^{T} \mapsto \\
& \mathcal{L}^{-1} \mathscr{F}-1 \mathscr{L}(\lambda, \xi) \mathscr{F} \mathcal{L}\left(f_{1}, \ldots, f_{m}\right)^{T}
\end{aligned}
$$

where \mathbb{H}_{k} and \mathbb{F}_{k} are appropriate functions spaces as $H_{p}^{s}\left(\mathbb{R}_{+}, H_{p}^{r}\left(\mathbb{R}^{n}\right)\right)$.

It is natural to consider the following questions:

- Assumptions on \mathscr{L} to plug in $\left(\partial_{t}, \nabla\right)$?
- How to find spaces such that $\mathscr{L}\left(\partial_{t}, \nabla\right) \in L\left(\prod_{k=1}^{m} \mathbb{H}_{k}, \prod_{k=1}^{m} \mathbb{F}_{k}\right)$?
- In which cases we have $\mathscr{L}\left(\partial_{t}, \nabla\right) \in L_{\text {ssom }}\left(\prod_{k=1}^{m} \mathbb{H}_{k}, \prod_{k=1}^{m} \mathbb{F}_{k}\right)$?

How to define $f\left(\partial_{t}, \nabla\right)$?

Outline: In the following we always assume $f \in H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)$ i.e

$$
f: S_{\theta} \times \sum_{\delta}^{n} \longrightarrow \mathbb{C}, \quad \theta \in(0,2 \pi), \delta \in(0, \pi / 2)
$$

is holomorphic and polynomially bounded.

How to define $f\left(\partial_{t}, \nabla\right)$?

Outline: In the following we always assume $f \in H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)$ i.e

$$
f: S_{\theta} \times \sum_{\delta}^{n} \longrightarrow \mathbb{C}, \quad \theta \in(0,2 \pi), \delta \in(0, \pi / 2)
$$

is holomorphic and polynomially bounded.

- $\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)$ is a tuple of bisectorial operators.
∂_{t} is an \mathcal{R}-sectorial operator with angle $\theta=\pi / 2$.

How to define $f\left(\partial_{t}, \nabla\right)$?

Outline: In the following we always assume $f \in H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)$ i.e

$$
f: S_{\theta} \times \sum_{\delta}^{n} \longrightarrow \mathbb{C}, \quad \theta \in(0,2 \pi), \delta \in(0, \pi / 2)
$$

is holomorphic and polynomially bounded.

- $\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)$ is a tuple of bisectorial operators.
∂_{t} is an \mathcal{R}-sectorial operator with angle $\theta=\pi / 2$.
- $\nabla_{+}:=\left(\partial_{t}, \nabla\right)$ has a bounded joint H^{∞}-calculus on $L_{q}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right)$
\rightsquigarrow representation by Fourier multiplier

How to define $f\left(\partial_{t}, \nabla\right)$?

Outline: In the following we always assume $f \in H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)$ i.e

$$
f: S_{\theta} \times \sum_{\delta}^{n} \longrightarrow \mathbb{C}, \quad \theta \in(0,2 \pi), \delta \in(0, \pi / 2)
$$

is holomorphic and polynomially bounded.

- $\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)$ is a tuple of bisectorial operators.
∂_{t} is an \mathcal{R}-sectorial operator with angle $\theta=\pi / 2$.
- $\nabla_{+}:=\left(\partial_{t}, \nabla\right)$ has a bounded joint H^{∞}-calculus on $L_{q}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right)$
\rightsquigarrow representation by Fourier multiplier
- ∇_{+}has a bounded joint H^{∞}-calculus on

$$
W_{\mathcal{F}, \mathcal{K}}^{s, r}:={ }_{0} \mathcal{F}^{s}\left(\mathbb{R}_{+}, \mathcal{K}^{r}\left(\mathbb{R}^{n}\right)\right), \quad s \geq 0, r \in \mathbb{R}
$$

with

$$
\begin{aligned}
& \mathcal{F} \in\left\{\begin{array}{ll}
\left\{B_{p_{0}, q_{0}},\right. & \left.H_{p_{0}}\right\} \\
\left\{H_{p_{0}}\right\} & , s>0 \\
& , s=0
\end{array}, \quad \mathcal{K} \in\left\{B_{p_{1}, q_{1}}, H_{p_{1}}\right\},\right. \\
& p_{i}, q_{i} \in(1, \infty) .
\end{aligned}
$$

Definition of order functions and weight functions

- A function

$$
\mathcal{O}(\gamma)=\max _{\ell=0, \ldots, M}\left\{b_{\ell}(\mathcal{O})+\gamma \cdot m_{\ell}(\mathcal{O})\right\}, \quad \gamma>0 .
$$

with $m_{\ell}(\mathcal{O}), b_{\ell}(\mathcal{O}) \geq 0$ is called order function.

- We also define the associated weight function by

$$
\Xi_{\mathcal{O}}(\lambda, z):=\sum_{(s, r) \in \nu(\mathcal{O})}|\lambda|^{s}|z|^{r}, \quad(\lambda, z) \in S_{\theta} \times \Sigma_{\delta}^{n}
$$

with $\nu(\mathcal{O}):=\left\{\left(m_{\ell}(\mathcal{O}), b_{\ell}(\mathcal{O})\right): \ell=0, \ldots, M\right\}$ $\cup\left\{(0,0),\left(\max _{\ell} m_{\ell}(\mathcal{O}), 0\right),\left(0, \max _{\ell} b_{\ell}(\mathcal{O})\right)\right\}$.

- \mathcal{O} is called an upper (resp. lower) order function of \mathbf{Q} if there exist $C>0$ and $\lambda_{0}>0$ with

$$
\begin{aligned}
& \qquad|Q(\lambda, z)| \leq C \cdot \Xi_{\mathcal{O}}(\lambda, z), \quad(\lambda, z) \in S_{\theta} \times \sum_{\delta}^{n}, \quad|\lambda| \geq \lambda_{0} \\
& \text { (resp. } \left.\Xi_{\mathcal{O}}(\lambda, z) \leq C \cdot|Q(\lambda, z)|\right) .
\end{aligned}
$$

- A symbol $Q \in H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)$ is called \mathbf{N}-parabolic if there exists an order function $\mathcal{O}(Q)$ which is an upper and lower order function of Q i.e. $|Q| \approx \Xi_{\mathcal{O}(Q)}$.
\rightsquigarrow Useful characterization by non-vanishing principal parts (cf. S. Gindikin and L.R. Volevich (1992), R. Denk, J. Saal and J. Seiler (2008), K. (2009))
- Example: The order function $\mathcal{O}(\gamma):=\max \{1,1 / 2 \cdot \gamma\}$ is a lower and upper order function of $\omega(\lambda, z):=\sqrt{\lambda-\sum_{k=1}^{n} z^{2}} \Rightarrow \omega$ is N-parabolic.
- A symbol $Q \in H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)$ is called \mathbf{N}-parabolic if there exists an order function $\mathcal{O}(Q)$ which is an upper and lower order function of Q i.e. $|Q| \approx \Xi_{\mathcal{O}(Q)}$.
\rightsquigarrow Useful characterization by non-vanishing principal parts (cf. S. Gindikin and L.R. Volevich (1992), R. Denk, J. Saal and J. Seiler (2008), K. (2009))
- Example: The order function $\mathcal{O}(\gamma):=\max \{1,1 / 2 \cdot \gamma\}$ is a lower and upper order function of $\omega(\lambda, z):=\sqrt{\lambda-\sum_{k=1}^{n} z^{2}} \Rightarrow \omega$ is N-parabolic.
- Estimates by weight functions can help to understand the mapping properties of the operator $Q\left(\nabla_{+}\right)$.
- Example: Let $\mathcal{O}(\gamma):=\max \{3 / 2,1+1 \gamma, 2 \gamma\}$ be upper order of Q

$$
\begin{aligned}
& \Rightarrow \quad Q_{\mu}\left(\nabla_{+}^{\mathcal{W}}\right) \in L\left(W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}, r^{\prime}+3 / 2} \cap W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}+1, r^{\prime}+1} \cap W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}+2, r^{\prime}}, \mathcal{W}\right) \\
\mathcal{W}:= & W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}, r^{\prime}}, Q_{\mu}:=Q(\mu+\cdot \cdot \cdot), \mu \geq \mu_{0}>0 .
\end{aligned}
$$

- A symbol $Q \in H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)$ is called \mathbf{N}-parabolic if there exists an order function $\mathcal{O}(Q)$ which is an upper and lower order function of Q i.e.
$|Q| \approx \Xi_{\mathcal{O}(Q)}$.
\rightsquigarrow Useful characterization by non-vanishing principal parts (cf. S. Gindikin and L.R. Volevich (1992), R. Denk, J. Saal and J. Seiler (2008), K. (2009))
- Example: The order function $\mathcal{O}(\gamma):=\max \{1,1 / 2 \cdot \gamma\}$ is a lower and upper order function of $\omega(\lambda, z):=\sqrt{\lambda-\sum_{k=1}^{n} z^{2}} \Rightarrow \omega$ is N-parabolic.
- Estimates by weight functions can help to understand the mapping properties of the operator $Q\left(\nabla_{+}\right)$.
- Example: Let $\mathcal{O}(\gamma):=\max \{3 / 2,1+1 \gamma, 2 \gamma\}$ be upper order of Q

$$
\Rightarrow \quad Q_{\mu}\left(\nabla_{+}^{\mathcal{W}}\right) \in L\left(W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}, r^{\prime}+3 / 2} \cap W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}+r^{\prime}+1} \cap \mathcal{W}_{\mathcal{F}, \mathcal{K}}^{s^{\prime}+2, r^{\prime}}, \mathcal{W}\right)
$$

$\mathcal{W}:=W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}, r^{\prime}}, Q_{\mu}:=Q(\mu+\cdot, \cdot), \mu \geq \mu_{0}>0$.
If $\mathcal{O}(\gamma):=\max \{3 / 2,1+1 \gamma, 2 \gamma\}$ is also a lower order function of Q (i.e. Q is N-parabolic) then we even have

$$
Q_{\mu}\left(\nabla_{+}^{\mathcal{W}}\right) \in L_{\operatorname{Isom}}\left(W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}, r^{\prime}+3 / 2} \cap W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}+1, r^{\prime}+1} \cap W_{\mathcal{F}, \mathcal{K}}^{s^{\prime}+2, r^{\prime}}, \mathcal{W}\right) .
$$

Douglis-Nirenberg/N-parabolic system

Definition

The system $\mathscr{L} \in\left[H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)\right]^{m \times m}$ is called a mixed order system in the sense of Douglis-Nirenberg if there are order functions $s_{j}:=\mathcal{O}_{j}^{\text {row }}$ and $t_{k}:=\mathcal{O}_{k}^{\text {col }}(j, k=1, \ldots, M)$ such that $s_{j}+t_{k}$ is an upper order function of $\mathscr{L}_{j k}$ for all $j, k=1, \ldots, M$ (i.e. the upper order structure of each component splits into row and column part).

Douglis-Nirenberg/N-parabolic system

Definition

The system $\mathscr{L} \in\left[H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)\right]^{m \times m}$ is called a mixed order system in the sense of Douglis-Nirenberg if there are order functions $s_{j}:=\mathcal{O}_{j}^{\text {row }}$ and $t_{k}:=\mathcal{O}_{k}^{\text {col }}(j, k=1, \ldots, M)$ such that $s_{j}+t_{k}$ is an upper order function of $\mathscr{L}_{j k}$ for all $j, k=1, \ldots, M$ (i.e. the upper order structure of each component splits into row and column part).

Definition

Let $\mathscr{L} \in\left[H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)\right]^{m \times m}$ be a mixed order system in the sense of Douglis-Nirenberg. Then the system \mathscr{L} is called an N -parabolic mixed order system if
(i) $\operatorname{det} \mathscr{L}$ is N -parabolic,
(ii) $[\mathcal{O}(\operatorname{det} \mathscr{L})](\gamma)=\sum_{j=1}^{m}\left(s_{j}(\gamma)+t_{j}(\gamma)\right)$ for all $\gamma>0$.

Motivation for these Definitions: Consider the N-parabolic 2×2-system $\mathscr{L} \in\left[H_{P}\left(S_{\theta} \times \Sigma_{\delta}^{n}\right)\right]^{2 \times 2}$. Hence we have

$$
\mathscr{L}^{-1}=\left(\begin{array}{cc}
\frac{\mathscr{L}_{22}}{\mathscr{L}_{11} \mathscr{L}_{22} \overline{\mathscr{L}}_{12} \mathscr{L}_{21}} & \frac{-\mathscr{L}_{12}}{\mathscr{L}_{11} \mathscr{L}_{22}-\mathscr{L}_{11} \mathscr{L}_{21}} \\
\mathscr{L}_{11} \mathscr{L}_{22}-\mathscr{L}_{12} \mathscr{L}_{21} & \mathscr{L}_{11} \mathscr{L}_{22}-\mathscr{L}_{12} \mathscr{L}_{21}
\end{array}\right)
$$

N -parabolic mixed order systems can be found in works of R. Denk and L.R. Volevich (2008) (only L_{2} but general weight functions)

Motivation for these Definitions: Consider the N -parabolic 2×2-system $\mathscr{L} \in\left[H_{P}\left(S_{\theta} \times \Sigma_{\delta}^{n}\right)\right]^{2 \times 2}$. Hence we have

$$
\mathscr{L}^{-1}=\left(\begin{array}{cc}
\frac{\mathscr{L}_{22}}{\mathscr{L}_{11} \mathscr{L}_{22}-\mathscr{L}_{12} \mathscr{L}_{21}} & \frac{-\mathscr{L}_{12}}{\mathscr{L}_{11} \mathscr{L}_{22}-\mathscr{L}_{12} \mathscr{L}_{21}} \\
\mathscr{\mathscr { L }}_{11} \mathscr{L}_{22}-\mathscr{L}_{12} \mathscr{L}_{21} & \mathscr{L}_{11} \mathscr{L}_{22}-\mathscr{L}_{12} \mathscr{L}_{21}
\end{array}\right)
$$

N -parabolic mixed order systems can be found in works of R. Denk and L.R. Volevich (2008) (only L_{2} but general weight functions)

Theorem (K., 2010)

Let $\mathscr{L} \in\left[H_{P}\left(S_{\theta} \times \sum_{\delta}^{n}\right)\right]^{m \times m}$ be an N-parabolic mixed order system and

$$
\mathbb{H}_{i}:=\bigcap_{\ell=0}^{M} W_{\mathcal{F}_{\ell}, \mathcal{K}_{\ell}}^{s_{\ell}^{\prime}+m_{\ell}\left(t_{i}\right), r_{\ell}^{\prime}+b_{\ell}\left(t_{i}\right)}, \quad \mathbb{F}_{j}:=\bigcap_{\ell=0}^{M} W_{\mathcal{F}_{\ell}, \mathcal{K}_{\ell}}^{s_{\ell}^{\prime}-m_{\ell}\left(s_{j}\right), r_{\ell}^{\prime}-b_{\ell}\left(s_{j}\right)}
$$

with fixed constants $s_{\ell}^{\prime}, r_{\ell}^{\prime} \geq 0$. If certain "compatibility embeddings" hold then there exists $\mu_{0}>0$ such that for all $\mu \geq \mu_{0}$

$$
\mathscr{L}_{\mu}\left(\nabla_{+}\right) \in L_{\text {Isom }}(\mathbb{H}, \mathbb{F}), \quad\left(\mathscr{L}_{\mu}\left(\nabla_{+}\right)\right)^{-1}=\mathscr{L}_{\mu}^{-1}\left(\nabla_{+}\right)
$$

with $\mathbb{H}:=\prod_{i=1}^{m} \mathbb{H}_{i}$ and $\mathbb{F}:=\prod_{i=1}^{m} \mathbb{F}_{i}$.

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$
on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$

- The generalized $L_{p}-L_{q}$ thermo-elastic plate equations [R. Denk, R. Racke, 2006].
on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$

- The generalized $L_{p}-L_{q}$ thermo-elastic plate equations [R. Denk, R. Racke, 2006].
- The generalized $L_{p}-L_{q}$ Stokes problem [D. Bothe, J. Prüß, 2007]. on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$

- The generalized $L_{p}-L_{q}$ thermo-elastic plate equations [R. Denk, R. Racke, 2006].
- The generalized $L_{p}-L_{q}$ Stokes problem [D. Bothe, J. Prüß, 2007]. on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)
- The Stefan problem with Gibbs-Thomson correction [R. Denk, J. Saal, J. Seiler, 2008] [J. Escher, J. Prüß, G. Simonett, 2003].

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$

- The generalized $L_{p}-L_{q}$ thermo-elastic plate equations [R. Denk, R. Racke, 2006].
- The generalized $L_{p}-L_{q}$ Stokes problem [D. Bothe, J. Prüß, 2007]. on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)
- The Stefan problem with Gibbs-Thomson correction [R. Denk, J. Saal, J. Seiler, 2008] [J. Escher, J. Prüß, G. Simonett, 2003].
- The spin-coating process
[R. Denk, M. Geissert, M. Hieber, J. Saal, O. Sawada, 2011].

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$

- The generalized $L_{p}-L_{q}$ thermo-elastic plate equations [R. Denk, R. Racke, 2006].
- The generalized $L_{p}-L_{q}$ Stokes problem [D. Bothe, J. Prüß, 2007]. on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)
- The Stefan problem with Gibbs-Thomson correction [R. Denk, J. Saal, J. Seiler, 2008] [J. Escher, J. Prüß, G. Simonett, 2003].
- The spin-coating process
[R. Denk, M. Geissert, M. Hieber, J. Saal, O. Sawada, 2011].
- Two-phase Navier Stokes equation with surface tension and gravity [J. Prüß, G. Simonett, 2009-2010].

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$

- The generalized $L_{p}-L_{q}$ thermo-elastic plate equations [R. Denk, R. Racke, 2006].
- The generalized $L_{p}-L_{q}$ Stokes problem [D. Bothe, J. Prüß, 2007]. on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)
- The Stefan problem with Gibbs-Thomson correction [R. Denk, J. Saal, J. Seiler, 2008] [J. Escher, J. Prüß, G. Simonett, 2003].
- The spin-coating process
[R. Denk, M. Geissert, M. Hieber, J. Saal, O. Sawada, 2011].
- Two-phase Navier Stokes equation with surface tension and gravity [J. Prüß, G. Simonett, 2009-2010].
- Two-phase Navier Stokes equation with Boussinesq-Scriven surface fluid [J. Prüß, D. Bothe, 2010].

Applications

We can apply these results to the following problems on $\Omega=\mathbb{R}^{n}$

- The generalized $L_{p}-L_{q}$ thermo-elastic plate equations [R. Denk, R. Racke, 2006].
- The generalized $L_{p}-L_{q}$ Stokes problem [D. Bothe, J. Prüß, 2007]. on $\Omega=\mathbb{R}_{+}^{n}$ (respectively $\Omega=\dot{\mathbb{R}}^{n}$)
- The Stefan problem with Gibbs-Thomson correction [R. Denk, J. Saal, J. Seiler, 2008] [J. Escher, J. Prüß, G. Simonett, 2003].
- The spin-coating process
[R. Denk, M. Geissert, M. Hieber, J. Saal, O. Sawada, 2011].
- Two-phase Navier Stokes equation with surface tension and gravity [J. Prüß, G. Simonett, 2009-2010].
- Two-phase Navier Stokes equation with Boussinesq-Scriven surface fluid [J. Prüß, D. Bothe, 2010].
- Two-phase Navier Stokes equation with surface viscosity and gravity.

Two-phase Navier Stokes equation with surface tension

We consider the following linearized problem for $u=(v, w), \pi$, and h :

$$
\left\{\begin{array}{rlc}
\rho \partial_{t} u-\mu \Delta u+\nabla \pi & =0 & \text { in } \mathbb{R}_{+} \times \dot{\mathbb{R}}^{n+1} \\
\operatorname{div} u & =0 & \text { in } \mathbb{R}_{+} \times \mathbb{R}^{n+1} \\
-\llbracket \mu \partial_{y} v \rrbracket-\llbracket \mu \nabla_{x} w \rrbracket & =g_{v} & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
-2 \llbracket \mu \partial_{y} w \rrbracket+\llbracket \pi \rrbracket-\sigma \Delta h & =g_{w} & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
\llbracket u \rrbracket & =0 & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
\partial_{t} h-\gamma_{0} w & =g_{h} & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
u(t=0) & =0 & \text { in } \mathbb{R}^{n+1} \\
h(t=0) & =0 & \text { in } \mathbb{R}^{n}
\end{array}\right.
$$

with $(u, \pi, \rho, \mu)=\left(u_{1}, \pi_{1}, \rho_{1}, \mu_{1}\right) \chi_{\mathbb{R}_{-}^{n+1}}+\left(u_{2}, \pi_{2}, \rho_{2}, \mu_{2}\right) \chi_{\mathbb{R}_{+}^{n+1}}, \sigma>0$, $\llbracket \phi \rrbracket:=\gamma_{0} \phi_{\mathbb{R}_{+}^{n+1}}-\gamma_{0} \phi_{\mathbb{R}_{-}^{n+1}}$.

Two-phase Navier Stokes equation with surface tension

 We consider the following linearized problem for $u=(v, w), \pi$, and h :$$
\left\{\begin{array}{rll}
\rho \partial_{t} u-\mu \Delta u+\nabla \pi & =0 & \text { in } \mathbb{R}_{+} \times \dot{\mathbb{R}}^{n+1} \\
\operatorname{div} u & =0 & \text { in } \mathbb{R}_{+} \times \dot{\mathbb{R}}^{n+1} \\
-\llbracket \mu \partial_{y} v \rrbracket-\llbracket \mu \nabla_{x} w \rrbracket & =g_{v} & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
-2 \llbracket \mu \partial_{y} w \rrbracket+\llbracket \pi \rrbracket-\sigma \Delta h & =g_{w} & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
\llbracket u \rrbracket & =0 & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
\partial_{t} h-\gamma_{0} w & =g_{h} & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{n} \\
u(t=0) & =0 & \text { in } \dot{R}^{n+1} \\
h(t=0) & =0 & \text { in } \mathbb{R}^{n}
\end{array}\right.
$$

with $(u, \pi, \rho, \mu)=\left(u_{1}, \pi_{1}, \rho_{1}, \mu_{1}\right) \chi_{\mathbb{R}_{-}^{n+1}}+\left(u_{2}, \pi_{2}, \rho_{2}, \mu_{2}\right) \chi_{\mathbb{R}_{+}^{n+1}}, \sigma>0$, $\llbracket \phi \rrbracket:=\gamma_{0} \phi_{\mathbb{R}_{+}^{n+1}}-\gamma_{0} \phi_{\mathbb{R}_{-}^{n+1}}$.

- Formal Laplace respectively Fourier transform yield ODEs for $(\hat{u}, \hat{\pi})$.
- Solve ODEs with Green's functions.
- Determine free parameters by boundary conditions.
- Solve $\llbracket \hat{w} \rrbracket=0$ to eliminate pressure trace \hat{p}_{2}.

Two-phase Navier Stokes equation with surface tension

For the unknowns $\hat{\Phi}_{v}^{(j)}, \hat{\Phi}_{w}^{(j)}, \llbracket \hat{\pi} \rrbracket$, and \hat{h} we obtain the system

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccccc}
i \xi^{T} & -\omega_{2} & 0 & 0 & 0 \\
i \xi^{T} & 0 & \omega_{1} & 0 & 0 \\
0 & -\mu_{2} \omega_{2} \gamma_{2}^{+} \Omega_{+}^{-1} & -\mu_{1} \omega_{1} \gamma_{1}^{+} \Omega_{+}^{-1} & \lambda & -|\xi| \Omega_{+}^{-1} \\
0 & 2 \mu_{2} \omega_{2} & 2 \mu_{1} \omega_{1} & \sigma|\xi|^{2} & 1 \\
\Omega_{i d} & -i \xi\left(\mu_{2}+\kappa\right) & i \xi\left(\mu_{1}+\kappa\right) & 0 & i \xi\left(\mu_{2} \gamma_{2}^{-}-\mu_{1} \gamma_{1}^{-}\right) \Omega_{+}^{-1}
\end{array}\right)}_{=: \mathscr{L}}\left(\begin{array}{c}
\hat{\Phi}_{v}^{(2)} \\
\hat{\Phi}_{w}^{(2)} \\
\hat{\Phi}_{w}^{(1)} \\
\hat{h} \\
\llbracket \hat{\pi} \rrbracket
\end{array}\right) \\
& \quad=\left(\begin{array}{c}
0 \\
0 \\
\hat{g}_{h} \\
\hat{g}_{w} \\
\hat{g}_{v}
\end{array}\right), \quad|\xi| \hat{p}_{2}=-\delta \hat{\Phi}_{w}^{(2)}+\delta \hat{\Phi}_{w}^{(1)}+\frac{1}{\mu_{1}} \cdot \frac{\delta|\xi|}{\omega_{1} \gamma_{1}^{+}} \llbracket \hat{\pi} \rrbracket
\end{aligned}
$$

with $\omega_{j}(\lambda, \xi):=\mu_{j}^{-1 / 2}\left(\rho_{j} \lambda+\mu_{j}|\xi|^{2}\right)^{1 / 2}, \gamma_{j}^{ \pm}:=\omega_{j} \pm|\xi|, \delta:=\frac{\mu_{1} \mu_{2} \omega_{1} \omega_{2} \gamma_{1}^{+} \gamma_{2}^{+}}{\Omega_{+}}$ $\Omega_{+}:=\mu_{1} \omega_{1} \gamma_{1}^{+}+\mu_{2} \omega_{2} \gamma_{2}^{+}, \kappa:=\frac{\mu_{1} \mu_{2}}{|\xi|} \cdot\left(\omega_{1} \gamma_{1}^{+} \gamma_{2}^{-}+\omega_{2} \gamma_{2}^{+} \gamma_{1}^{-}\right) \Omega_{+}^{-1}$

Two-phase Navier Stokes equation with surface tension

As determinant we obtain $|\operatorname{det} \mathscr{L}|=\left|\omega_{1} \omega_{2} / \Omega_{+}\right| \cdot\left|\Omega^{n-1}\right| \cdot|P|$ with

$$
\begin{aligned}
P(\lambda, \xi):= & \left(\mu_{1} \omega_{1}^{2}+\mu_{2} \omega_{2}^{2}\right)\left(\mu_{1} \omega_{1}+\mu_{2} \omega_{2}\right) \lambda \\
& +\left[\left(\mu_{1} \omega_{1}+\mu_{2} \omega_{2}\right)^{2}+\mu_{1} \mu_{2}\left(\omega_{1}+\omega_{2}\right)^{2}\right] \lambda|\xi| \\
& +\left[3\left(\mu_{2}^{2} \omega_{2}+\mu_{1}^{2} \omega_{1}\right)-\mu_{1} \mu_{2}\left(\omega_{1}+\omega_{2}\right)\right] \lambda|\xi|^{2} \\
& -\left(\mu_{1}-\mu_{2}\right)^{2} \lambda|\xi|^{3}+\sigma\left(\mu_{1} \omega_{1}+\mu_{2} \omega_{2}\right)|\xi|^{3} \\
& +\bar{\mu} \sigma|\xi|^{4}
\end{aligned}
$$

$\bar{\mu}:=\mu_{1}+\mu_{2}, \bar{\rho}:=\rho_{1}+\rho_{2}$. One can easily prove with the characterization of non-vanishing principal parts that $\operatorname{det} \mathscr{L}$ is N-parabolic with order function

$$
[\mathcal{O}(\operatorname{det} \mathscr{L})](\gamma)=\max \{n+3, \gamma+n+2,[n+4] / 2 \gamma\}, \quad \gamma>0 .
$$

Two-phase Navier Stokes equation with surface tension

To obtain a Douglis-Nirenberg system we define

$$
\begin{aligned}
t_{1}(\gamma):=\ldots:=t_{n+2}(\gamma) & :=\max \{1, \gamma / 2\}, \\
t_{n+3}(\gamma) & :=\max \{2, \gamma+1,3 / 2 \gamma\} \\
t_{n+4}(\gamma) & :=0, \\
s_{1}(\gamma):=s_{2}(\gamma) & :=0, \\
s_{3}(\gamma) & :=-\max \{1, \gamma / 2\}, \\
s_{4}(\gamma):=\ldots:=s_{n+4}(\gamma) & :=0 .
\end{aligned}
$$

It is easy to show that $s_{j}+t_{k}$ is an upper order function of $\mathscr{L}_{j, k}$ and $\mathcal{O}(\operatorname{det} \mathscr{L})=\sum_{j=1}^{n}\left(s_{j}+t_{j}\right)$.
$\Rightarrow \mathscr{L}$ is an N -parabolic mixed order system

Two-phase Navier Stokes equation with surface tension

So we can construct the spaces of maximal regularity with
$\left(r_{0}^{\prime}, s_{0}^{\prime}\right):=\left(r_{1}^{\prime}, s_{1}^{\prime}\right):=(1-1 / p, 0),\left(r_{2}^{\prime}, s_{2}^{\prime}\right):=(0,1 / 2-1 /(2 p))$, and $\left(\mathcal{F}_{0}, \mathcal{K}_{0}\right):=\left(\mathcal{F}_{1}, \mathcal{K}_{1}\right)=\left(H_{p}, B_{p}\right),\left(\mathcal{F}_{2}, \mathcal{K}_{2}\right)=\left(B_{p}, H_{p}\right)$

Two-phase Navier Stokes equation with surface tension

So we can construct the spaces of maximal regularity with

$$
\begin{aligned}
& \left(r_{0}^{\prime}, s_{0}^{\prime}\right):=\left(r_{1}^{\prime}, s_{1}^{\prime}\right):=(1-1 / p, 0),\left(r_{2}^{\prime}, s_{2}^{\prime}\right):=(0,1 / 2-1 /(2 p)) \text {, and } \\
& \left(\mathcal{F}_{0}, \mathcal{K}_{0}\right):=\left(\mathcal{F}_{1}, \mathcal{K}_{1}\right)=\left(H_{p}, B_{p}\right),\left(\mathcal{F}_{2}, \mathcal{K}_{2}\right)=\left(B_{p}, H_{p}\right)
\end{aligned}
$$

$$
\mathbb{H}_{1}=\ldots=\mathbb{H}_{n+2}={ }_{0} B_{p}^{1-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right)
$$

$\mathbb{H}_{n+3}={ }_{0} B_{p}^{2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap_{0} H_{p}^{1}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{3-1 / p}\left(\mathbb{R}^{n}\right)\right)$,
$\mathbb{H}_{n+4}={ }_{o} B_{p}^{1 / 2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{1-1 / p}\left(\mathbb{R}^{n}\right)\right)$,

Two-phase Navier Stokes equation with surface tension

So we can construct the spaces of maximal regularity with

$$
\begin{aligned}
& \left(r_{0}^{\prime}, s_{0}^{\prime}\right):=\left(r_{1}^{\prime}, s_{1}^{\prime}\right):=(1-1 / p, 0),\left(r_{2}^{\prime}, s_{2}^{\prime}\right):=(0,1 / 2-1 /(2 p)), \text { and } \\
& \left(\mathcal{F}_{0}, \mathcal{K}_{0}\right):=\left(\mathcal{F}_{1}, \mathcal{K}_{1}\right)=\left(H_{p}, B_{p}\right),\left(\mathcal{F}_{2}, \mathcal{K}_{2}\right)=\left(B_{p}, H_{p}\right) \\
& \quad \mathbb{H}_{1}=\ldots=\mathbb{H}_{n+2}={ }_{0} B_{p}^{1-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right),
\end{aligned}
$$

$\mathbb{H}_{n+3}={ }_{0} B_{p}^{2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap_{0} H_{p}^{1}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{3-1 / p}\left(\mathbb{R}^{n}\right)\right)$,
$\mathbb{H}_{n+4}={ }_{o} B_{p}^{1 / 2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{1-1 / p}\left(\mathbb{R}^{n}\right)\right)$,

$$
\begin{aligned}
\mathbb{F}_{1}=\mathbb{F}_{2} & ={ }_{o} B_{p}^{1 / 2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{1-1 / p}\left(\mathbb{R}^{n}\right)\right), \\
\mathbb{F}_{3} & ={ }_{0} B_{p}^{1-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right), \\
\mathbb{F}_{4}=\ldots=\mathbb{F}_{n+4} & ={ }_{o} B_{p}^{1 / 2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{1-1 / p}\left(\mathbb{R}^{n}\right)\right),
\end{aligned}
$$

Two-phase Navier Stokes equation with surface tension

So we can construct the spaces of maximal regularity with

$$
\begin{aligned}
& \left(r_{0}^{\prime}, s_{0}^{\prime}\right):=\left(r_{1}^{\prime}, s_{1}^{\prime}\right):=(1-1 / p, 0),\left(r_{2}^{\prime}, s_{2}^{\prime}\right):=(0,1 / 2-1 /(2 p)), \text { and } \\
& \left(\mathcal{F}_{0}, \mathcal{K}_{0}\right):=\left(\mathcal{F}_{1}, \mathcal{K}_{1}\right)=\left(H_{p}, B_{p}\right),\left(\mathcal{F}_{2}, \mathcal{K}_{2}\right)=\left(B_{p}, H_{p}\right) \\
& \quad \mathbb{H}_{1}=\ldots=\mathbb{H}_{n+2}={ }_{0} B_{p}^{1-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right),
\end{aligned}
$$

$\mathbb{H}_{n+3}={ }_{0} B_{p}^{2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap_{0} H_{p}^{1}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{3-1 / p}\left(\mathbb{R}^{n}\right)\right)$,
$\mathbb{H}_{n+4}={ }_{o} B_{p}^{1 / 2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{1-1 / p}\left(\mathbb{R}^{n}\right)\right)$,

$$
\begin{aligned}
\mathbb{F}_{1}=\mathbb{F}_{2} & ={ }_{0} B_{p}^{1 / 2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{1-1 / p}\left(\mathbb{R}^{n}\right)\right), \\
\mathbb{F}_{3} & ={ }_{0} B_{p}^{1-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{2-1 / p}\left(\mathbb{R}^{n}\right)\right), \\
\mathbb{F}_{4}=\ldots=\mathbb{F}_{n+4} & ={ }_{0} B_{p}^{1 / 2-1 /(2 p)}\left(\mathbb{R}_{+}, L_{p}\left(\mathbb{R}^{n}\right)\right) \cap L_{p}\left(\mathbb{R}_{+}, B_{p}^{1-1 / p}\left(\mathbb{R}^{n}\right)\right),
\end{aligned}
$$

So we finally obtain $\mathscr{L}_{\mu}\left(\nabla_{+}\right) \in L_{\text {soom }}\left(\prod_{k=1}^{n+4} \mathbb{H}_{k}, \prod_{k=1}^{n+4} \mathbb{F}_{k}\right)$.

Advantages of this method:

- Algorithmic approach
- We don't need the explicit inverse matrix of the system.
- We can substitute 'hard analysis' by linear algebra.
- It is easy to find spaces for maximal regularity.

Advantages of this method:

- Algorithmic approach
- We don't need the explicit inverse matrix of the system.
- We can substitute 'hard analysis' by linear algebra.
- It is easy to find spaces for maximal regularity.

Thank you for your attention.

