Viscous Profiles for Shock Waves in Isentropic Magnetohydrodynamics

Andreas Klaiber (University of Konstanz)

ISENTROPIC MHD IN 1D Equations:

$$\partial_t \rho + \partial_x (\rho v) = 0$$

$$\partial_t (\rho v) + \partial_x \left(\rho v^2 + \pi(\rho) + \frac{1}{2} |\mathbf{b}|^2 \right) = \mu \partial_{xx} v$$
(PDE)

$$\partial_t (\rho \mathbf{w}) + \partial_x (\rho v \mathbf{w} - a \mathbf{b}) = \nu \partial_{xx} \mathbf{w}$$

$$\partial_t \mathbf{b} + \partial_x (v \mathbf{b} - a \mathbf{w}) = \eta \partial_{xx} \mathbf{b}$$

Assumptions:

• positive viscosity coefficients $\mu - \nu > 0$, $\nu > 0$, $\eta > 0$

VISCOUS PROFILES FOR SHOCK WAVES

A viscous profile for the shock wave

$$U^{s}(x,t) = \begin{cases} U^{-}, & x < st \\ U^{+}, & x > st \end{cases}$$

 $(U^{\pm} \text{ related by Rankine-Hugoniot conditions})$ is a solution $\Phi(x - st)$ of (PDE) with the same asymptotic states: $\lim_{\xi \to \pm \infty} \Phi(\xi) = U^{\pm}$. Φ corresponds (for s = 0 w.l.o.g) to a heteroclinic orbit of:

 \circ general barotropic pressure law $\pi(\rho)$ with

$$\pi(\rho) > 0, \pi'(\rho) > 0, \pi''(\rho) \ge 0, \lim_{\rho \to 0} \pi(\rho) = 0, \lim_{\rho \to \infty} \pi(\rho) = \infty$$

Properties of *inviscid* part, i.e. $\mu = \nu = \eta = 0$: non-strictly hyperbolic system allows for various shock wave solutions

$$\mu v' = mv + p(v) + \frac{1}{2} |\mathbf{b}|^2 - j$$
$$\nu \mathbf{w}' = m\mathbf{w} - a\mathbf{b}$$
$$\eta \mathbf{b}' = v\mathbf{b} - a\mathbf{w} - (c, 0)^T$$

 $\left(\Sigma^{5}\right)$

with $\circ p(v) := \pi(m/v)$, constants $a \in \mathbb{R}$, $m := \rho v > 0$, • two parameters $j \in (-\infty, +\infty), c \in [0, +\infty)$.

PROPERTIES OF THE DYNAMICAL SYSTEM (Σ^5)

(i) System (Σ^5) is gradient-like with respect to $P(\mathbf{u}) = \frac{1}{2}mv^2 + \frac{1}{2}m|\mathbf{w}|^2 + \frac{1}{2}v|\mathbf{b}|^2 + \int^v p(v)dv - jv - a\mathbf{b}\cdot\mathbf{w} - (c,0)^{\mathsf{T}}\cdot\mathbf{b},$ i.e. (Σ^5) can be written in the form $B\mathbf{u}' = \nabla P(\mathbf{u})$ with the viscosity matrix $B = \text{diag}(\mu, \nu, \nu, \eta, \eta)$.

(ii) Existence of rest points: For c > 0 there are $j_1^* \leq j_2^*$ such that (Σ^5) possesses

 $0 \mid 2 \mid 4 \text{ fixed points if } j \in (-\infty, j_1^*) \mid j \in (j_1^*, j_2^*) \mid j \in (j_2^*, +\infty),$

denoted by $\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$. They are ordered according to $v_0 > v_1 > v_2 > v_3$ and $P(\mathbf{u}_0) < P(\mathbf{u}_1) < P(\mathbf{u}_2) < P(\mathbf{u}_3)$.

EXISTENCE OF VISCOUS PROFILES (for given $j \in \mathbb{R}$, c > 0 and $(\mu, \nu, \eta) \in (0, \infty)^3$)

Fast and Slow Shock (by Conley Index Theory)

Theorem: If the rest points u_0 and u_1 [resp. u_2 and u_3] exist, then there is a heteroclinic orbit $\mathbf{u}_0 \rightarrow \mathbf{u}_1$ [resp. $\mathbf{u}_2 \rightarrow \mathbf{u}_3$].

PROOF SKETCH.

For $k \in (P(\mathbf{u}_1), P(\mathbf{u}_2))$ the set S_{01} [resp. S_{23}] consisting of all points on complete, bounded orbits contained in $\{\mathbf{u} : P(\mathbf{u}) < k\}$ [resp. $\{\mathbf{u}: P(\mathbf{u}) > k\}]$

- contains the rest points $\mathbf{u}_{0,1}$ [resp. $\mathbf{u}_{2,3}$],

- is *isolated invariant*, and

- has Conley index $\overline{0}$ (\equiv homotopy type of one-point pointed space). Thus, we conclude the proof by applying the following:

> **Theorem.** If an isolated invariant set S of a gradientlike system contains precisely two hyperbolic rest points and has Conley index $h(S) = \overline{0}$, then there exists a heteroclinic orbit connecting these two rest points.

Intermediate Shocks (by Geometric Singular Perturbation Theory) **Theorem:** If all four rest points exist and $0 < \nu \ll \min\{\mu, \eta\}$ holds, then there is a threshold $\omega > 0$ such that: If $\mu/\eta < \omega$, then only the int. orbits $\mathbf{u}_0 \to \mathbf{u}_2$, $\mathbf{u}_0 \to \mathbf{u}_3$, $\mathbf{u}_1 \to \mathbf{u}_3$ exist.

If $\mu/\eta = \omega$, then only the int. orbit $\mathbf{u}_1 \rightarrow \mathbf{u}_2$ exists.

If $\mu/\eta > \omega$, then no int. orbit exists.

PROOF SKETCH.

The system (Σ^5) restricted to $\{w_2 = b_2 = 0\}$ is amenable to GSPT in the sense that the existence of orbits for small $\nu > 0$ can be inferred from the existence of orbits for the reduced restricted problem $(\nu = 0)$, which is indicated in the figures.

OPEN QUESTIONS

• What does the complete picture of the global heteroclinic bifurcation look like?

REFERENCES

[CS] Conley, C. C. and Smoller, J. A., On the structure of magnetohydrodynamic shock waves, Comm. Pure Appl. Math., 27 (1974), pp. 367-375.

	[FS]	Freistühler, H. and Szmolyan, P., Existence and bifurcation of viscous profiles for all intermediate magnetohydro- dynamic shock waves, SIAM J. Math. Anal., 26 (1995), pp. 112-128.
	[K1]	Klaiber, A., On the existence of viscous profiles in isothermal magnetohydrodynamics (in German), Diploma Thesis, 2009, <i>University of Leipzig</i> (advisor: Prof. Dr. Heinrich Freistühler).
	[K2]	Klaiber, A., Viscous Profiles for Shock Waves in Isothermal Magnetohydrodynamics, <i>J. Dyn. Diff. Eqn.</i> , 24 (2012), no. 3, pp. 663-683.
	[Sm]	Smoller, J., Shock Waves and Reaction-Diffusion Equations, Springer, 1994 (2nd ed.).
	[Sz]	Szmolyan, P., Transversal Heteroclinic and Homoclinic Orbits in Singular Perturbation Problems, <i>J. Diff. Eqn.</i> , 92 (1991), pp. 252-281.

Andreas Klaiber • University of Konstanz, Germany • Andreas.Klaiber@uni-konstanz.de