Universität Konstanz Fachbereich Mathematik und Statistik DR MATTHIAS KOTSCHOTE MATTHIAS SROCZINSKI

21. April 2016

Parabolische Differentialgleichungen 1. Übungsblatt

Aufgabe 1.1 Sei $m: \mathbb{R}^n \to \mathbb{R}$ stetig und nach oben beschränkt. Sei $1 \leq p < \infty$ und $X := L^p(\mathbb{R}^n)$. Betrachte die Operatorfamilie $(T(t))_{t\geq 0}$, welche durch $(T(t)f)(x) := e^{tm(x)}f(x)$ für $f \in X$, $t \geq 0$, $x \in \mathbb{R}^n$ definiert ist.

- a) Zeige, dass $(T(t))_{t>0}$ eine C_0 -Halbgruppe auf X definiert.
- b) Bestimme den Generator von $(T(t))_{t\geq 0}$.
- c) In welchem Fall erhält man auch für $p = \infty$ eine C_0 -Halbgruppe?

Aufgabe 1.2 Seien X, Y Banachräume und $(T_k)_{k \in \mathbb{N}} \subset L(X, Y)$ eine beschränkte Folge in L(X, Y). Es gebe eine dichte Teilmenge $D \subset X$ so, dass für alle $x \in D$ die Folge $(T_k x)_{k \in \mathbb{N}} \subset Y$ eine Cauchyfolge in Y ist. Zeige, dass genau ein $T \in L(X, Y)$ existiert, sodass $(T_k)_{k \in \mathbb{N}}$ stark gegen T konvergiert und dass $||T||_{L(X,Y)} \leq \liminf_{k \to \infty} ||T_k||_{L(X,Y)}$ gilt.

Aufgabe 1.3 Sei $1 \le p < \infty$. Für $f \in L^p(\mathbb{R})$ und $t \ge 0$ definiere

$$(T(t)f)(x) := f(t+x).$$

Zeige, dass $(T(t))_{t\geq 0}$ eine C_0 -Halbgruppe auf $L^p(\mathbb{R})$ definiert, deren Generator A durch $D(A) = W_p^1(\mathbb{R})$, $Af = \frac{d}{dx}f$ $(f \in W_p^1(\mathbb{R}))$ gegeben ist. (Hierbei ist die Ableitung im distributionellen Sinne gemeint.)

Hinweis: Verwende Aufgabe 1.2, um die starke Stetigkeit zu zeigen. Benutze ohne Beweis, dass für $f \in W^1_p(\mathbb{R})$ der Grenzwert $\lim_{t \to 0} \frac{f(\cdot + t) - f(\cdot)}{t}$ in $L^p(\mathbb{R})$ existiert und gleich $\frac{d}{dx}f$ ist.