

Übungen zur Vorlesung Algebra (B3)

Blatt 2 Ideale, Ringe von Brüchen und faktorielle Ringe

Sei R stets ein Ring.

Aufgabe 5

(4 Punkte)

Sei $S \subset R$ eine multiplikative Teilmenge mit $0 \notin S$. Beweisen Sie:

- a) Es gibt ein Ideal $I \subseteq R$, das maximal ist mit der Eigenschaft $I \cap S = \emptyset$. (Hinweis: Vergleiche Satz 2.15 aus der Vorlesung.)
- b) Jedes solche I ist prim.

Aufgabe 6

(4 Punkte)

Seien R nullteilerfrei und $S \subseteq R$ eine multiplikative Teilmenge mit $0 \notin S$. Bezeichne $\iota : R \to S^{-1}R$ die in Korollar 3.6 definierte Einbettung. Wir identifizieren R mit $\iota(R)$, sodass wir $R \subseteq S^{-1}R$ schreiben können. Zeigen Sie:

- a) Ist I ein Ideal von R, so ist $e(I):=S^{-1}I=\left\{\frac{a}{s}:a\in I,s\in S\right\}$ ein Ideal von $S^{-1}R$.
- b) Ist J ein Ideal von $S^{-1}R$, so ist $c(J) := J \cap R$ ein Ideal von R.
- c) Für $J \subseteq S^{-1}R$ gilt e(c(J)) = J.
- d) $J \subseteq S^{-1}R$ ist genau dann prim, wenn $c(J) \subseteq R$ prim ist.

Aufgabe 7

(4 Punkte)

Zeigen Sie: Ist R[X] ein Hauptidealring, so ist R ein Körper.

Aufgabe 8

(4 Punkte)

Seien R faktoriell, P ein Vertretersystem der Primelemente von R modulo Assoziiertheit, $p \in P$ und K = Quot(R).

- a) Zeigen Sie, dass die p-adische Bewertung auf K für alle $r \in R^{\times}$ und für alle $x,y \in K^{\times}$ folgende Eigenschaften hat:
 - i) $v_p(rx) = v_p(x)$;
 - ii) $v_p(-x) = v_p(x)$;
 - iii) $v_p(x) \neq v_p(y)$ impliziert $v_p(x+y) = \min\{v_p(x), v_p(y)\};$
- b) Sei nun $R=\mathbb{Z}.$ Zeigen Sie, dass $\{a\in\mathbb{Q}:v_p(a)\geq 0\}=\mathbb{Z}_{(p)}.$

Abgabe: Montag, 09. November 2015, 10:00 Uhr, Briefkästen auf F4.