

Übungen zur Vorlesung Lineare Algebra II (B2)

Blatt 1

Aufgabe 1

Erinnerung: K[[X]] bezeichnet die Algebra der Potenzereihen über K, deren Multiplikation durch $(fg)_n := \sum_{i=0}^n f_i g_{n-i}$ definiert ist.

Sei K ein Körper.

a) Sei $x = (0, 1, 0, \dots) \in K[[X]]$. Zeigen Sie, dass

$$x^i = (0, 0, \dots, 0, \underbrace{1}_{\text{i-te Stelle}}, 0\dots)$$

- b) Zeigen Sie, dass die Multiplikation in K[[X]] distributiv ist und dass für jedes $c \in K$ und alle $f, g \in K[[X]]$ gilt: c(fg) = (cf)g.
- c) Zeigen Sie, dass für alle $f,g\in K[X]$ mit $f+g\neq 0$ gilt

$$deg(f+g) \le max\{deg(f), deg(g)\}$$

d) Zeigen Sie, dass für alle $f,g\in K[X]$ mit $deg(f)\neq deg(g)$,

$$deg(f+g) = max\{deg(f), deg(g)\}$$

Aufgabe 2

Sei K ein Körper.

Erinnerung: Zwei K-Algebren \mathcal{A}, \mathcal{B} sind isomorph als K-Algebren, wenn es einen K-Vektorraumisomorphismus $\phi : \mathcal{A} \to \mathcal{B}$ gibt mit $\phi(xy) = \phi(x)\phi(y)$ für alle $x, y \in \mathcal{A}$.

- a) Zeigen Sie, dass K[[X]] ein Integritätsbereich ist.
- b) Es seien S, T isomorphe K-Algebren. Zeigen Sie, dass S genau dann ein Integritätsbereich ist, wenn T ein Integritätsbereich ist.
- c) Zeigen Sie, dass der K-Vektorraum $\mathcal{A} = K^{\mathbb{N}_0}$ mit Multiplikation $(fg)_n = f_n g_n$ eine K-Algebra mit Einheit ist.
- d) Sind K[[X]] und \mathcal{A} isomorph als K-Algebren?

Aufgabe 3

Sei K ein Körper.

Erinnerung: Seien V ein K-Vektorraum, $T \in \mathcal{L}(V, V)$ und $f \in K[X]$. Für ein Polynom $f := \sum_{i=0}^{n} c_i X^i$ mit $c_i \in K$ definieren wir $f(T) := \sum_{i=0}^{n} c_i T^i$ wobei $T^0 := Id_V$ und $T^i := T \circ T^{i-1}$ (T komponiert mit T^{i-1}).

a) Sei $T:K^3\to K^3$ der lineare Operator definiert durch:

$$T(x_1, x_2, x_3) = (x_1, x_3, -2x_2 - x_3)$$

Sei $f \in K[X]$ das Polynom $f(x) = -x^3 + 2$.

Berechnen Sie $f(T)(x_1, x_2, x_3)$ für alle $x_1, x_2, x_3 \in K$.

Sei K ein Körper und $h \in K[X]$ vom Grad mindestens 1 und definiere die Abblidung: $\phi_h : K[X] \to K[X]$ durch $f \mapsto f(h)$.

- b) Zeigen Sie, dass ϕ_h linear und injektiv ist.
- c) Sei $f \in K[X]$. Zeigen Sie, dass $deg(\phi_h(f)) = deg(f)deg(h)$
- d) Zeigen Sie, dass ϕ_h genau dann ein Isomorphismus ist, wenn deg(h) = 1

Zusatzaufgabe für Interessierte

Erinnerung: Sei \mathcal{A} eine K-Algebra und S eine Teilmenge von \mathcal{A} . Die von S erzeugte K-Algebra ist der Schnitt aller K-Algebra, die S enthälten (es ist also die kleinste K-Algebra, die S enthält).

Sei \mathcal{A} die von $\{X^2, X^3\}$ erzeugte \mathbb{R} -Algebra in $\mathbb{R}[X]$. Wir wollen zeigen, dass \mathcal{A} und $\mathbb{R}[X]$ als \mathbb{R} -Algebra nicht isomorph sind, obwohl sie als \mathbb{R} -Vektorräume isomorph sind. Wir nehmen an, es existiere einen Isomorphismus von \mathbb{R} -Algebra: $\Phi : \mathbb{R}[X] \to \mathcal{A}$.

a) Zeigen Sie, dass $\mathcal{A} = span(\{X^k \mid k \neq 1\})$ und geben Sie dann eine kurze Erklärung, warum \mathcal{A} und $\mathbb{R}[X]$ als \mathbb{R} -Vektorräume isomorph sind.

Hinweis: jede Zahl $n \geq 2$ lässt sich als Linearkombination von 2 und 3 schreiben.

- b) Sei $h := \Phi(X)$. Zeigen Sie $\Phi = \phi_h$, wobei ϕ_h wie in Aufgabe 3 definiert ist.
- c) Folgern Sie aus Aufgabe 3.c) , dass deg(h) = 1 gelten muss. Beachten Sie, dass wir 3.d) nicht anwenden können.
- d) Folgern Sie aus c), dass \mathcal{A} und $\mathbb{R}[X]$ als \mathbb{R} -Algebra nicht isomorph sind.

Abgabe: Donnerstag, 21. April 2016, 10:00 Uhr, Briefkästen auf F4.