

Übungen zur Vorlesung Lineare Algebra II (B2)

Blatt 3

Aufgabe 1

- (a) Welche der folgenden Teilmengen von $\mathbb{Q}[X]$ sind Ideale? Begründen Sie Ihre Antwort.
 - (a) $\{f \in \mathbb{Q}[X] \mid f(0) = 0\}$
 - (b) $\{f \in \mathbb{Q}[X] \mid D(f)(2) = 0\}.$
 - (c) $\{f \in \mathbb{Q}[X] \mid D(f)(2) = f(2) = 0\}.$
- (b) Sei K ein Unterkörper von \mathbb{C} . Zeigen Sie, dass

$$(x^2 + 8x + 16)K[X] + (x+1)K[X] = K[X].$$

Aufgabe 2

a) Zeigen Sie, dass $|S_n| = n!$.

Hinweis: Sie können eine Induktion auf n durchführen und ein geeignetes $\tau \in S_n$ finden, so dass $\tau \sigma$ ein Element von S_{n-1} ist.

b) Schreiben Sie

als Produkt von disjunkten Zyklen und als Produkt von Transpositionen. Berechnen Sie sign (σ) .

c) Sei $\tau \in S_n$ ein k-Zykel, $k \leq n$. Zeigen Sie, dass $sign(\tau) = (-1)^{k+1}$.

Aufgabe 3

Sei $n \in \mathbb{N}$.

- a) Seien $\sigma, \tau \in S_n$ zwei disjunkte Zykel. Zeigen Sie, dass $\sigma \tau$ kein Zykel ist.
- b) Zeigen Sie, dass $\sigma, \tau \in S_n$ kommutieren, wenn σ und τ disjunkt sind.
- c) Seien $\tau, \alpha_1, \ldots, \alpha_m \in S_n$ mit $\alpha_1, \ldots, \alpha_m$ paarweise disjunkt. Zeigen Sie, dass $\alpha_1 \cdots \alpha_m$ und τ genau dann disjunkt sind, wenn für $0 < i \le m \ \alpha_i$ und τ disjunkt sind.

Aufgabe 4 Diese Aufgabe ist eine Folge zur Aufgabe 1 aus Blatt 2, also haben wir $n \in \mathbb{N}$ und

$$P_i := \prod_{j \neq i} \frac{X - t_j}{t_i - t_j}$$

für alle $i \in \{0, \dots, n\}$.

(a) Zeigen Sie, dass die Basiswechselmatrix von der Basis $(1, X, X^2, ..., X^n)$ nach der Basis $(P_0, ..., P_n)$

$$\mathcal{V}_n := \left(egin{array}{ccccc} 1 & t_0 & t_0^2 & \dots & t_0^n \ 1 & t_1 & t_1^2 & \dots & t_1^n \ 1 & t_2 & t_2^2 & & t_2^n \ dots & dots & dots & dots \ 1 & t_n & t_n^2 & \dots & t_n^n \end{array}
ight)$$

ist. Diese Matrix heißt Vandermonde-Matrix.

(b) Seien

$$A := \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & 4 \end{pmatrix} \in \mathrm{Mat}_{3 \times 3}(\mathbb{Q})$$

und $w_0, w_1, w_2 \in \mathbb{Q}$.

Finden Sie $a_0, a_1, a_2 \in \mathbb{Q}$, so dass für das Polynom $p := a_2X^2 + a_1X + a_0$ gilt $p(1) = w_0$, $p(-1) = w_1$ und $p(2) = w_2$, in dem Sie das Inverse von A berechnen.

(c) Seien $f_0, \ldots, f_n \in K_n[X]$ mit $deg(f_i) = i$ für jedes $i \in \{0, \ldots, n\}$. Zeigen Sie, dass (f_0, \ldots, f_n) eine Basis von $K_n[X]$ ist.

Zusatzaufgabe für Interessierte

a) Sei $n \in \mathbb{N}$. Zeigen Sie, dass $\tau^{n!} = id$ für alle $\tau \in S_n$. Hinweis: Untersuchen Sie zunächst, was die l-te Potenz eines m-Zykels ist.

Abgabe: Donnerstag, 5. Mai 2016, 10:00 Uhr, Briefkästen auf F4.