

Real Algebraic Geometry I

Exercise Sheet 1 Orderings and Dedekind cuts

Exercise 1

(4 points)

Let $n \in \mathbb{N}$ and let $\operatorname{sym}_{n \times n}(\mathbb{R})$ denote the set of all symmetric $(n \times n)$ -matrices over \mathbb{R} . A matrix $A \in \operatorname{sym}_{n \times n}(\mathbb{R})$ is called **positive semi-definite (psd)** if $v^t A v \geq 0$ for any $v \in \mathbb{R}^n$. Consider the relation \leq on $\operatorname{sym}_{n \times n}(\mathbb{R})$ given by

$$A \leq B : \iff B - A \text{ is psd.}$$

- (a) Show that for $n \geq 2$, the relation \leq is a partial order on $\operatorname{sym}_{n \times n}(\mathbb{R})$ which is NOT total.
- (b) Determine for what $A \in \text{sym}_{n \times n}(\mathbb{R})$ the set $\{\lambda A \mid \lambda \in \mathbb{R}\}$ is totally ordered by \leq .

Exercise 2 (4 points)

(a) Let \leq be the relation on $\mathbb{R}[\mathbf{x}]$ defined as follows: For any $p(\mathbf{x}) = a_n \mathbf{x}^n + \ldots + a_1 \mathbf{x} + a_0$ and $q(\mathbf{x}) = b_m \mathbf{x}^m + \ldots + b_1 \mathbf{x} + b_0$,

$$p(\mathbf{x}) \leq q(\mathbf{x}) : \iff a_i \leq b_i \text{ for all } i \in \mathbb{N}_0,$$

where we set $a_i = 0$ for i > n and $b_i = 0$ for i > m. Show that \leq defines a partial order on $\mathbb{R}[x]$ which is NOT total.

(b) We denote the set of **formal power series in one variable** by

$$\mathbb{R}[\![\mathbf{x}]\!] := \left\{ \sum_{i=0}^{\infty} a_i \mathbf{x}^i \mid a_i \in \mathbb{R} \right\}.$$

Note that $\mathbb{R}[x]$ is a subset of $\mathbb{R}[x]$.

Let \leq be the total order on $\mathbb{R}[x]$ given in Lecture 1. Show that \leq can be extended to a total order on $\mathbb{R}[x]$, i.e. find a total order \leq' on $\mathbb{R}[x]$ such that for any $p(x), q(x) \in \mathbb{R}[x]$,

$$p(\mathbf{x}) \le' q(\mathbf{x}) \Longleftrightarrow p(\mathbf{x}) \le q(\mathbf{x}).$$

(c) Let $\mathbb{R}^{\mathbb{N}}$ be the set of all real-valued sequences. Find a total order \leq on $\mathbb{R}^{\mathbb{N}}$ and an order-preserving bijection

$$\varphi: \left(\mathbb{R}^{\mathbb{N}}, \leq\right) \to \left(\mathbb{R}[\![x]\!], \leq'\right),$$

i.e. a bijection φ from $\mathbb{R}^{\mathbb{N}}$ to $\mathbb{R}[x]$ such that for any $a, b \in \mathbb{R}^{\mathbb{N}}$, if $a \leq b$, then $\varphi(a) \leq' \varphi(b)$, where \leq' is the total order from (b).

(d) For a sequence $a = (a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ we define the **support of** a by

$$\operatorname{supp}(a) := \{ n \in \mathbb{N} \mid a_n \neq 0 \}.$$

Let $F \subseteq \mathbb{R}^{\mathbb{N}}$ be the set of all sequences with finite support. Describe the totally ordered set $(\varphi(F), \leq')$.

Exercise 3

(4 points)

Let (K, \leq) be an ordered field and denote by K^{\times} the multiplicative group $K \setminus \{0\}$. Prove that the following are equivalent:

- (i) (K, \leq) is Archimedean.
- (ii) For any $a, b \in K^{\times}$ there exists $n \in \mathbb{N}$ such that |a| < n|b| and |b| < n|a|.
- (iii) K contains no infinitesimal positive element.
- (iv) \mathbb{Z} is coterminal in K.

Exercise 4

(4 points)

- (a) Let (Γ, \leq) be a totally ordered set. Show that (Γ, \leq) is Dedekind complete if and only if (Γ, \leq) has no free Dedekind cut.
- (b) Let (K, \leq) be a Dedekind complete ordered field. Show that (K, \leq) is Archimedean.

Please hand in your solutions by Friday, 02 November 2018, 15:00h (postbox 16 in F4).