

Real Algebraic Geometry I

Exercise Sheet 2 Hölder's theorem and positive cones

Exercise 5

(4 points)

The aim of this exercise is to prove Hölder's theorem.

- (a) Let (K, \leq) be an Archimedean ordered field. Show that \mathbb{Q} is dense in (K, \leq) , i.e. for any $x, y \in K$ with x < y there exists $q \in \mathbb{Q}$ such that x < q < y.
- (b) Let (K, \leq) be an Archimedean ordered field and let $\varphi : K \to \mathbb{R}$ be the map defined in the proof of Hölder's theorem, i.e. for any $a \in K$, we define $\varphi(a) := \sup I_a = \inf F_a \in \mathbb{R}$, where

$$I_a := \{ q \in \mathbb{Q} \mid q \le a \} \text{ and } F_a := \{ q \in \mathbb{Q} \mid a \le q \}.$$

Show that:

- (i) φ is a ring homomorphism between K and \mathbb{R} and therefore a field embedding.
- (ii) φ preserves the order, i.e. for any $a, b \in K$, if $a \leq b$, then $\varphi(a) \leq \varphi(b)$.

Exercise 6

(4 points)

The aim of this exercise is to prove that (\mathbb{R}, \leq) is the unique Dedekind complete ordered field up to isomorphism.

- (a) Recall that (\mathbb{R}, \leq) is supremum (least upper bound) complete, i.e. any nonempty subset of \mathbb{R} which is bounded from above has a supremum (least upper bound) in \mathbb{R} . Deduce that (\mathbb{R}, \leq) is Dedekind complete.
- (b) Let (K, \leq) be a Dedekind complete ordered field. Show that K is isomorphic to \mathbb{R} as an ordered field, i.e. that there exists an order-preserving isomorphism from K to \mathbb{R} .

(Hint: Recall Exercise 4)

Exercise 7

(4 points)

- (a) Show that a cone P in a field K is proper if and only if $-P \cap P = \{0\}$.
- (b) Prove the following:
 - (i) If (K, \leq) is an ordered field, then the subset $P := \{a \in K \mid a \geq 0\}$ is a positive cone of K.
 - (ii) If P is a positive cone of a field K, then the relation

$$a \le b :\iff b - a \in P$$

defines an order on K such that (K, \leq) is an ordered field.

(c) Deduce that, for any field K, there is a bijective correspondence between the set of orderings on K and the set of positive cones of K.

For a field K with a positive cone P we now also call (K, P) an ordered field, where the order on K induced by P is as above. In this case, we also say that P is an **ordering on** K.

Exercise 8

(4 points)

Let K be a field. Recall that the **set of sums of squares** of elements of a field K is denoted by $\sum K^2$. Show that:

- (a) $\sum K^2$ is the smallest cone of K.
- (b) If K is (formally) real, then $\sum K^2$ is a proper cone.
- (c) If K is algebraically closed, then K is not real.
- (d) If (K, P) is an ordered field, F is another field and $\varphi : F \to K$ is a field homomorphism, then $Q := \varphi^{-1}(P)$ is an ordering of F.

In this case, we say that P is an **extension** of Q and Q is the **pullback** of P.

- (e) If P_1 and P_2 are positive cones of K with $P_1 \subseteq P_2$, then $P_1 = P_2$. Deduce that if $\sum K^2$ is a positive cone, then it is the only ordering of K.
- (f) The fields \mathbb{R} and \mathbb{Q} admit a unique ordering.

Please hand in your solutions by **Thursday**, **08 November 2018**, **08:15h** (postbox 16 in F4).