Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller
 WS 2018 / 2019

Real Algebraic Geometry I

Exercise Sheet 4
 Real closed fields

Exercise 13

(4 points)
Let (K, \leq) be an ordered field and let $\mathcal{B}:=\{] a, b[\mid a, b \in K, a<b\} \cup\{\emptyset\}$, i.e. the collection of all open intervals and the empty set.
(a) Show that \mathcal{B} forms the base of a topology on K, i.e. that \mathcal{B} is closed under finite intersections and covers K.

The topology on K induced by \mathcal{B} is called the order topology. We will now consider K endowed with the order topology as a topological space.
(b) Show that the field operations $+: K \times K \rightarrow K$ and $\cdot: K \times K \rightarrow K$ are continuous, where $K \times K$ is endowed with the product topology.
(c) Show that the following are equivalent:
(i) K is not Dedekind complete.
(ii) K is disconnected.
(iii) K is totally disconnected.

Exercise 14

(4 points)
Let R be a real closed field and let $f(\mathrm{x})=d_{m} \mathrm{x}^{m}+d_{m-1} \mathrm{x}^{m-1}+\ldots+d_{0} \in R[\mathrm{x}]$ with $d_{m} \neq 0$. Show that the following statements are equivalent:
(i) $f \geq 0$ on R, i.e. $f(a) \geq 0$ for any $a \in R$.
(ii) $d_{m}>0$ and all real roots of f, i.e. all roots of f in R, have even multiplicity.
(iii) $f=g^{2}+h^{2}$ for some $g, h \in R[\mathrm{x}]$.
(iv) $f \in \sum R[\mathrm{x}]^{2}$.

Exercise 15

(4 points)
Let R be a real closed field and let $f(\mathrm{x})=\mathrm{x}^{m}+d_{m-1} \mathrm{x}^{m-1}+\ldots+d_{0}$ be a monic polynomial over R. Suppose that all roots a_{1}, \ldots, a_{m} of f are real. Show that

$$
a_{i} \geq 0 \text { for all } i \in\{1, \ldots, m\} \Longleftrightarrow(-1)^{m-i} d_{i} \geq 0 \text { for all } i \in\{0, \ldots, m-1\} .
$$

Exercise 16

(4 points)
(a) Construct a countable field K and two orderings \leq and \leq^{\prime} on K such that (K, \leq) is Archimedean and $\left(K, \leq^{\prime}\right)$ is non-Archimedean.
(b) Let R be a real closed field and K a subfield of R. Show that

$$
K^{\text {ralg }}=\{\alpha \in R \mid \alpha \text { is algebraic over } K\}
$$

the relative algebraic closure of K in R, is real closed. Give an example of a real closed field R and a proper subfield $K \subsetneq R$ such that $K^{\text {ralg }}=R$.
(c) Construct a countable Archimedean real closed field and a countable non-Archimedean real closed field.

Please hand in your solutions by Thursday, 22 November 2018, 08:15h (postbox 16 in F4).

