Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller WS 2018 / 2019

Real Algebraic Geometry I

Exercise Sheet 4 Real closed fields

Exercise 13 (4 points)

Let (K, \leq) be an ordered field and let $\mathcal{B} := \{ a, b \in K, a < b \} \cup \{ \emptyset \}$, i.e. the collection of all open intervals and the empty set.

(a) Show that \mathcal{B} forms the base of a topology on K, i.e. that \mathcal{B} is closed under finite intersections and covers K.

The topology on K induced by \mathcal{B} is called the **order topology**. We will now consider K endowed with the order topology as a topological space.

- (b) Show that the field operations $+ : K \times K \to K$ and $\cdot : K \times K \to K$ are continuous, where $K \times K$ is endowed with the product topology.
- (c) Show that the following are equivalent:
 - (i) K is not Dedekind complete.
 - (ii) K is disconnected.
 - (iii) K is totally disconnected.

Exercise 14

(4 points)

Let R be a real closed field and let $f(\mathbf{x}) = d_m \mathbf{x}^m + d_{m-1} \mathbf{x}^{m-1} + \ldots + d_0 \in R[\mathbf{x}]$ with $d_m \neq 0$. Show that the following statements are equivalent:

- (i) $f \ge 0$ on R, i.e. $f(a) \ge 0$ for any $a \in R$.
- (ii) $d_m > 0$ and all real roots of f, i.e. all roots of f in R, have even multiplicity.
- (iii) $f = q^2 + h^2$ for some $q, h \in R[\mathbf{x}]$.
- (iv) $f \in \sum R[\mathbf{x}]^2$.

Exercise 15

(4 points)

Let R be a real closed field and let $f(\mathbf{x}) = \mathbf{x}^m + d_{m-1}\mathbf{x}^{m-1} + \ldots + d_0$ be a monic polynomial over R. Suppose that all roots a_1, \ldots, a_m of f are real. Show that

$$a_i \ge 0$$
 for all $i \in \{1, \dots, m\} \iff (-1)^{m-i} d_i \ge 0$ for all $i \in \{0, \dots, m-1\}$

Exercise 16 (4 points)

- (a) Construct a countable field K and two orderings \leq and \leq' on K such that (K, \leq) is Archimedean and (K, \leq') is non-Archimedean.
- (b) Let R be a real closed field and K a subfield of R. Show that

 $K^{\text{ralg}} = \{ \alpha \in R \mid \alpha \text{ is algebraic over } K \},\$

the relative algebraic closure of K in R, is real closed. Give an example of a real closed field R and a proper subfield $K \subsetneq R$ such that $K^{\text{ralg}} = R$.

(c) Construct a countable *Archimedean* real closed field and a countable *non-Archimedean* real closed field.

Please hand in your solutions by Thursday, 22 November 2018, 08:15h (postbox 16 in F4).