Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller
WS 2018 / 2019

Real Algebraic Geometry I

Exercise Sheet 5

Counting roots

Exercise 17
 (4 points)

(a) How many distinct orderings on $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ extend the ordering on \mathbb{Q} ?
(b) How many distinct orderings on $\mathbb{Q}(\pi)$ extend the ordering on \mathbb{Q} ?

Justify your answers!

Exercise 18

(4 points)
Let $(K,<)$ be an ordered field such that for any $f(\mathrm{x}) \in K[\mathrm{x}]$ the intermediate value property holds, i.e. for any $a, b \in K$ with $a<b$

$$
f(a)<0<f(b) \Longrightarrow \exists c \in] a, b[: f(c)=0 .
$$

Show that K is real closed.

Exercise 19

(4 points)
Let R be a real closed field.
(a) Show that the polynomial $f(\mathrm{x})=\mathrm{x}^{5}-4 \mathrm{x}^{2}+4 \mathrm{x}-1$ has no root in R which is greater than 1 .
(b) Let $g(\mathrm{x})=\mathrm{x}^{3}-b \in R[\mathrm{x}]$ with $b \neq 0$. Compute the number of roots of g in R.
(c) Construct a polynomial $h(\mathrm{x}) \in R[\mathrm{x}]$ consisting of 2 monomials which has exactly 3 distinct roots in R.

Exercise 20

(4 points)
Let R be a real closed field and let $f(\mathrm{x})=\mathrm{x}^{3}+6 \mathrm{x}^{2}-16 \in R[\mathrm{x}]$.
(a) Compute the Sturm sequence of f.
(b) Show that f has three distinct roots in $[-6,2]$.
(c) Denote the roots of f by $\alpha_{1}<\alpha_{2}<\alpha_{3}$. Show that $\alpha_{1} \in[-6,-5], \alpha_{2} \in[-3,-1]$ and $\alpha_{3} \in[1,2]$.

Please hand in your solutions by Thursday, 29 November 2018, 08:15h (postbox 16 in F4).

