Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller WS 2018 / 2019

Real Algebraic Geometry I

Exercise Sheet 5 Counting roots

Exercise 17 (4 points)

(a) How many distinct orderings on $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ extend the ordering on \mathbb{Q} ?

(b) How many distinct orderings on $\mathbb{Q}(\pi)$ extend the ordering on \mathbb{Q} ?

Justify your answers!

Exercise 18

(4 points)

Let (K, <) be an ordered field such that for any $f(\mathbf{x}) \in K[\mathbf{x}]$ the intermediate value property holds, i.e. for any $a, b \in K$ with a < b

$$f(a) < 0 < f(b) \Longrightarrow \exists c \in]a, b[: f(c) = 0.$$

Show that K is real closed.

Exercise 19

(4 points)

Let R be a real closed field.

- (a) Show that the polynomial $f(x) = x^5 4x^2 + 4x 1$ has no root in R which is greater than 1.
- (b) Let $g(\mathbf{x}) = \mathbf{x}^3 b \in R[\mathbf{x}]$ with $b \neq 0$. Compute the number of roots of g in R.
- (c) Construct a polynomial $h(\mathbf{x}) \in R[\mathbf{x}]$ consisting of 2 monomials which has exactly 3 distinct roots in R.

Exercise 20 (4 points) Let R be a real closed field and let $f(\mathbf{x}) = \mathbf{x}^3 + 6\mathbf{x}^2 - 16 \in R[\mathbf{x}].$

- (a) Compute the Sturm sequence of f.
- (b) Show that f has three distinct roots in [-6, 2].
- (c) Denote the roots of f by $\alpha_1 < \alpha_2 < \alpha_3$. Show that $\alpha_1 \in [-6, -5], \alpha_2 \in [-3, -1]$ and $\alpha_3 \in [1, 2]$.

Please hand in your solutions by Thursday, 29 November 2018, 08:15h (postbox 16 in F4).