Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller

Real Algebraic Geometry I

Exercise Sheet 6
 Semialgebraic sets

Exercise 21

(4 points)

Let (K, P) be an ordered field and let R be the real closure of (K, P). Recall that R can be equipped with the order topology and K can be considered as a topological subspace of R.
(a) Suppose that (K, P) is Archimedean. Show that K is dense in R, i.e. that R is the topological closure of K in R.
(b) Construct an ordered field which is not dense in its real closure.
(Hint: Take a suitable field Q and consider $Q(\mathrm{x})$ with a suitable ordering.)

Exercise 22

(4 points)
Let R be a real closed field and let $S(\underline{T}, \underline{X})$ be the system

$$
T_{2} X_{1}^{2}+T_{1} X_{2}^{2}+T_{1} T_{2} X_{1}+1=0
$$

where $\underline{T}=\left(T_{1}, T_{2}\right)$ and $\underline{X}=\left(X_{1}, X_{2}\right)$. Find systems of equalities and inequalities $S_{1}(\underline{T}), \ldots, S_{\ell}(\underline{T})$ with coefficients in \mathbb{Q} such that

$$
\forall \underline{T} \in R^{2}:\left[\left(\exists \underline{X} \in R^{2}: S(\underline{T}, \underline{X})\right) \Longleftrightarrow \bigvee_{i=1}^{\ell} S_{i}(\underline{T})\right]
$$

Exercise 23

(4 points)
Let R be a real closed field.
(a) Show that the semialgebraic sets in R are exactly the finite unions of points in R and open intervals with endpoints in $R \cup\{\infty,-\infty\}$.
(b) Let $m \in \mathbb{N}$ and let A be a semialgebraic subset of R^{m}. Show that for some $n \in \mathbb{N}$, there is an algebraic set $B \subseteq R^{m+n}$ such that $\pi(B)=A$, where $\pi: R^{m+n} \rightarrow R^{m}$ is the projection map introduced in Lecture 11.
(Hint: Find a polynomial $f \in R[\underline{t}, \underline{x}]$, where $\underline{t}=\left(t_{1}, \ldots, t_{m}\right)$ and $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$, such that $\left.A=\left\{\underline{t} \in R^{m} \mid \exists \underline{x} \in R^{n}: f(\underline{t}, \underline{x})=0\right\}.\right)$

Exercise 24

(4 points)
Let $\exp : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \mathrm{e}^{x}$ be the standard exponential function on \mathbb{R}.
(a) Let $S \subseteq \mathbb{R}$ be infinite and $g \in \mathbb{R}[X, Y]$ such that for any $x \in S$

$$
g(x, \exp (x))=0
$$

Show that $g=0$.
(Hint: If S is bounded, use the identity theorem of complex analysis: Let f and g be holomorphic, i.e. differentiable, functions from \mathbb{C} to \mathbb{C}. Suppose that the set $\{x \in \mathbb{C} \mid f(x)=g(x)\}$ has a limit point in \mathbb{C}. Then f and g coincide on \mathbb{C}, i.e. $f(x)=g(x)$ for any $x \in \mathbb{C}$.)
(b) Deduce that exp is not a semialgebraic map.

Please hand in your solutions by Thursday, 06 December 2018, 08:15h (postbox 16 in F4).

