

Real Algebraic Geometry I

Exercise Sheet 6 Semialgebraic sets

Exercise 21

(4 points)

Let (K, P) be an ordered field and let R be the real closure of (K, P). Recall that R can be equipped with the order topology and K can be considered as a topological subspace of R.

- (a) Suppose that (K, P) is Archimedean. Show that K is dense in R, i.e. that R is the topological closure of K in R.
- (b) Construct an ordered field which is not dense in its real closure.
 (*Hint: Take a suitable field Q and consider Q(x) with a suitable ordering.*)

Exercise 22

(4 points)

Let R be a real closed field and let $S(\underline{T}, \underline{X})$ be the system

$$T_2 X_1^2 + T_1 X_2^2 + T_1 T_2 X_1 + 1 = 0,$$

where $\underline{T} = (T_1, T_2)$ and $\underline{X} = (X_1, X_2)$. Find systems of equalities and inequalities $S_1(\underline{T}), \ldots, S_\ell(\underline{T})$ with coefficients in \mathbb{Q} such that

$$\forall \underline{T} \in R^2 : \left[\left(\exists \underline{X} \in R^2 : S\left(\underline{T}, \underline{X}\right) \right) \Longleftrightarrow \bigvee_{i=1}^{\ell} S_i\left(\underline{T}\right) \right].$$

Exercise 23 (4 points)

Let R be a real closed field.

- (a) Show that the semialgebraic sets in R are exactly the finite unions of points in R and open intervals with endpoints in $R \cup \{\infty, -\infty\}$.
- (b) Let $m \in \mathbb{N}$ and let A be a semialgebraic subset of \mathbb{R}^m . Show that for some $n \in \mathbb{N}$, there is an algebraic set $B \subseteq \mathbb{R}^{m+n}$ such that $\pi(B) = A$, where $\pi : \mathbb{R}^{m+n} \to \mathbb{R}^m$ is the projection map introduced in Lecture 11.

(*Hint: Find a polynomial* $f \in R[\underline{t}, \underline{x}]$, where $\underline{t} = (t_1, \ldots, t_m)$ and $\underline{x} = (x_1, \ldots, x_n)$, such that $A = \{\underline{t} \in R^m \mid \exists \underline{x} \in R^n : f(\underline{t}, \underline{x}) = 0\}.$)

Exercise 24 (4 points) Let $\exp : \mathbb{R} \to \mathbb{R}, x \mapsto e^x$ be the standard exponential function on \mathbb{R} .

(a) Let $S \subseteq \mathbb{R}$ be infinite and $g \in \mathbb{R}[X, Y]$ such that for any $x \in S$

$$g(x, \exp(x)) = 0.$$

Show that g = 0.

(Hint: If S is bounded, use the identity theorem of complex analysis: Let f and g be holomorphic, i.e. differentiable, functions from \mathbb{C} to \mathbb{C} . Suppose that the set $\{x \in \mathbb{C} \mid f(x) = g(x)\}$ has a limit point in \mathbb{C} . Then f and g coincide on \mathbb{C} , i.e. f(x) = g(x) for any $x \in \mathbb{C}$.)

(b) Deduce that exp is not a semialgebraic map.

Please hand in your solutions by Thursday, 06 December 2018, 08:15h (postbox 16 in F4).