Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller WS 2018 / 2019

Real Algebraic Geometry I

Exercise Sheet 9 Real closed fields II

Exercise 33 (4 points)

Let R be a real closed field and let $S(\underline{T}, \underline{X})$ be the system

 $T_2 X_1^2 + T_1 X_2^2 + T_1 T_2 X_1 - 1 = 0,$

where $\underline{T} = (T_1, T_2)$ and $\underline{X} = (X_1, X_2)$. Find systems of equalities and inequalities $S_1(\underline{T}), \ldots, S_\ell(\underline{T})$ with coefficients in \mathbb{Q} such that

$$\forall \underline{T} \in R^2 : \left[\left(\exists \underline{X} \in R^2 : S\left(\underline{T}, \underline{X}\right) \right) \Longleftrightarrow \bigvee_{i=1}^{\ell} S_i\left(\underline{T}\right) \right].$$

Exercise 34

(4 points)

An ordered field (K, \leq) is called **Euclidean** if any non-negative element has a square root in K, i.e. for any $x \in K$ with $x \geq 0$ there is some $y \in K$ such that $y^2 = x$. Construct a Euclidean ordered field which is *not* real closed.

Exercise 35 (4 points)

- (a) Let T be the set of all elements in \mathbb{R} which are transcendental over \mathbb{Q} . Show that there is a bijection between T and \mathbb{R} , i.e. that T and \mathbb{R} have the same cardinality.
- (b) Show that for any set A, there is a set P_A with greater cardinality than A, i.e. there is no surjection from A to P_A . Deduce that there are at least countably infinitely many distinct uncountable cardinalities.

Please hand in your solutions by Thursday, 10 January 2019, 08:15h (postbox 16 in F4).