Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller WS 2018 / 2019

Real Algebraic Geometry I

Exercise Sheet 13 Transcendence bases

Exercise 47 (4 points)

(a) Show that the ring of formal power series $\mathbb{R}[\underline{x}]$ is local, i.e. it contains exactly one maximal ideal.

(b) Let $f \in \mathbb{R}[\underline{x}]$ with

$$f = f_k + f_{k+1} + \dots$$

where $k \in \mathbb{N}$ and each $f_i \in \mathbb{R}[\underline{x}]$ is homogeneous and of degree *i*. Suppose that *f* is sos in $\mathbb{R}[\underline{x}]$. Show that *k* is even and f_k is a sum of squares of forms of degree $\frac{k}{2}$.

Exercise 48

(5 points)

Let (K, \leq) be an ordered field.

- (a) Let F be a subfield of K and let $a, b \in K$ with a < b. Suppose that every element in the interval $[a, b] \subseteq K$ is algebraic over F. Show that K is algebraic over F.
- (b) Show that if $\operatorname{trdeg}(K) = \aleph_0$ over \mathbb{Q} , then the cardinality of K is \aleph_0 .
- (c) Suppose that $\operatorname{trdeg}(K) = \aleph_0$ over \mathbb{Q} . Show that there exists a transcendence basis $A = \{a_1, a_2, \ldots\}$ of K/\mathbb{Q} which is dense in K, i.e. for any $c, d \in K$ with c < d there is some $i \in \mathbb{N}$ such that $c < a_i < d$.

(Hint: Let $\mathcal{B} = \{I_j \mid j \in \mathbb{N}\}\$ be the set of all open intervals]a, b[in K. For every $I_j \in \mathcal{B}$, find a suitable $a_j \in I_j$.)

Exercise 49

(3 points)

Let (K, \leq) be an ordered field and let R be the real closure of K. Show that for any set $A \subseteq K$ and any subfield $F \subseteq K$, the set A is a transcendence basis of K/F if and only if it is a transcendence basis of R/F.

Exercise 50

(4 points)

Let A be a commutative ring with 1 containing \mathbb{Q} . Let T be a generating preprime and M a maximal proper archimedean T-module. Show that the map $\alpha \colon A \to \mathbb{R}, a \mapsto \inf(\operatorname{cut}(a))$ is a ring homomorphism.

(This exercise requires the material convered in Lecture 27.)

Bonus Exercise (4 points) Show that the transcendence degree of \mathbb{R} over \mathbb{Q} is 2^{\aleph_0} .

The bonus exercise is voluntary and will be awarded extra points. Please hand in your solutions by Monday, 11 February 2019, 11:45h (postbox 16 in F4).