Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller

Real Algebraic Geometry II

Exercise Sheet 1
 Valued modules

Let Z be a commutative ring with 1 . All modules we consider are left Z-modules.

Exercise 1

(4 points)
Let (M, v) be a valued module.
(a) Show that M is torsion-free.
(b) Show that for any $x, y \in M$, the following hold:
(i) $v(-x)=v(x)$,
(ii) $v(x) \neq v(y) \Rightarrow v(x+y)=\min \{v(x), v(y)\}$,
(iii) $v(x+y)>v(x) \Rightarrow v(x)=v(y)$.

Exercise 2

(4 points)
Let $v: Z[x] \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ be given by $v(0)=\infty$ and $v(p)=\min \left\{k \mid a_{k} \neq 0\right\}$ for $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in$ $Z[x] \backslash\{0\}$.
(a) Suppose that $Z=\mathbb{Z}$.
(i) Show that $(Z[x], v)$ is a valued module.
(ii) Determine the skeleton of $(Z[x], v)$. Hence, or otherwise, find a Hahn sum $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ such that

$$
(Z[x], v) \cong\left(\bigsqcup_{\gamma \in \Gamma} B(\gamma), v_{\min }\right)
$$

(b) Does (i) also hold when Z is an arbitrary commutative ring with 1? Justify your answer!

Exercise 3

(4 points)
Let $\left(M_{1}, v_{1}\right)$ and $\left(M_{2}, v_{2}\right)$ be two valued modules with value sets $\Gamma_{1}=v_{1}\left(M_{1}\right)$ and $\Gamma_{2}=v_{2}\left(M_{2}\right)$. Moreover, let $h: M_{1} \rightarrow M_{2}$ be an isomorphism of Z-modules which preserves the valuation.
(i) Let $\widetilde{h}: \Gamma_{1} \rightarrow \Gamma_{2}, v_{1}(x) \mapsto v_{2}(h(x))$. Show that \widetilde{h} is well-defined and an isomorphism of ordered sets, i.e. an order-preserving bijection from Γ_{1} to Γ_{2}.
(ii) Show that for each $\gamma \in \Gamma_{1}$, the map h_{γ} given by

$$
B\left(M_{1}, \gamma\right) \rightarrow B\left(M_{2}, \widetilde{h}(\gamma)\right), \pi^{M_{1}}(\gamma, x) \mapsto \pi^{M_{2}}(\widetilde{h}(\gamma), h(x)) .
$$

is an isomorphism of Z-modules.

Exercise 4
 (4 points)

Let $[\Gamma,\{B(\gamma) \mid \gamma \in \Gamma\}]$ be an ordered system of torsion-free modules.
(i) Show that $\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$ is a module and that $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ is a submodule of $\mathbf{H}_{\gamma \in \Gamma} B(\gamma)$.
(ii) Show that $S(\underset{\gamma \in \Gamma}{\bigsqcup} B(\gamma)) \cong[\Gamma,\{B(\gamma) \mid \gamma \in \Gamma\}] \cong S\left(\mathbf{H}_{\gamma \in \Gamma} B(\gamma)\right)$.

Please hand in your solutions by Thursday, 25 April 2019, 10:00h (postbox 14 in F4).

