Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 3 Valuation independence

Let Q be a field. If not further specified, any vector space we consider is a Q-vector space.

Exercise 7

(4 points)

Recall that the polynomial ring $\mathbb{R}[x]$ is a subring of the ring of formal power series $\mathbb{R}[x]$. Consider both of these as \mathbb{R} -vector spaces.

Let v be the valuation on $\mathbb{R}[x]$ given in Exercise 2.

(a) Show that v extends to a valuation v_1 on $\mathbb{R}[x]$, i.e. that there exists a valuation v_1 on $\mathbb{R}[x]$ with $v_1(p) = v(p)$ for any $p \in \mathbb{R}[x]$, such that the extension

$$(\mathbb{R}[x], v) \subseteq (\mathbb{R}[x], v_1)$$

is immediate.

(b) Find an extension v_2 of v to $\mathbb{R}[x]$ such that

$$(\mathbb{R}[x], v) \subseteq (\mathbb{R}[x], v_2)$$

is not immediate.

Exercise 8

(4 points)

Let (V_1, v_1) and (V_2, v_2) be valued vector spaces such that $S(V_1) = S(V_2)$. Let $h: V_1 \to V_2$ be a valuation preserving isomorphism of vector spaces, i.e. for any $a \in V_1$, we have $v_2(h(a)) = v_1(a)$. Let $\mathcal{B} \subseteq V_1 \setminus \{0\}$.

- (a) Show that \mathcal{B} is Q-valuation independent if and only if $h(\mathcal{B})$ is Q-valuation independent.
- (b) Show that \mathcal{B} is a Q-valuation basis for (V_1, v_1) if and only if $h(\mathcal{B})$ is a Q-valuation basis for (V_2, v_2) .

Exercise 9

(4 points)

Let (V_1, v_1) and (V_2, v_2) be valued vector spaces such that $S(V_1) = S(V_2)$. Let $\mathcal{B}_1 \subseteq V_1 \setminus \{0\}$ be a *Q*-valuation basis for (V_1, v_1) and let $\mathcal{B}_2 \subseteq V_2 \setminus \{0\}$ be a *Q*-valuation basis for (V_2, v_2) . Suppose that there exists a valuation preserving bijection

$$\widetilde{h}: \mathcal{B}_1 \to \mathcal{B}_2$$

Let $h: V_1 \to V_2$ be the isomorphism obtained by linearly extending h. Show that h is valuation preserving.

Exercise 10

(4 points)

Consider the Q-vector space $(V, v) = (\mathbf{H}_{n \in \mathbb{N}} B_n, v_{\min}).$

- (a) Let $B_n = \mathbb{Q}$ for any $n \in \mathbb{N}$.
 - (i) Describe a maximal \mathbb{Q} -valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is a singleton for any $b \in \mathcal{B}$.
 - (ii) Describe a maximal \mathbb{Q} -valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is infinite for any $b \in \mathcal{B}$.
- (b) Let $B_n = \mathbb{R}$ for any $n \in \mathbb{N}$.
 - (i) Describe a maximal \mathbb{Q} -valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is a singleton for any $b \in \mathcal{B}$.
 - (ii) Describe a maximal \mathbb{Q} -valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is infinite for any $b \in \mathcal{B}$.
- (c) Bonus exercise: For any $n \in \mathbb{N}$, let $B_{2n-1} = \mathbb{R}$ and $B_{2n} = \mathbb{Q}$. Describe a maximal \mathbb{Q} -valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is infinite for any $b \in \mathcal{B}$.

The bonus exercise is voluntary and will be awarded extra points. Please hand in your solutions by **Thursday**, 09 May 2019, 10:00h (postbox 14 in F4).