Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller

SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 3
 Valuation independence

Let Q be a field. If not further specified, any vector space we consider is a Q-vector space.

Exercise 7

(4 points)
Recall that the polynomial ring $\mathbb{R}[x]$ is a subring of the ring of formal power series $\mathbb{R} \llbracket x \rrbracket$. Consider both of these as \mathbb{R}-vector spaces.
Let v be the valuation on $\mathbb{R}[x]$ given in Exercise 2.
(a) Show that v extends to a valuation v_{1} on $\mathbb{R} \llbracket x \rrbracket$, i.e. that there exists a valuation v_{1} on $\mathbb{R} \llbracket x \rrbracket$ with $v_{1}(p)=v(p)$ for any $p \in \mathbb{R}[x]$, such that the extension

$$
(\mathbb{R}[x], v) \subseteq\left(\mathbb{R} \llbracket x \rrbracket, v_{1}\right)
$$

is immediate.
(b) Find an extension v_{2} of v to $\mathbb{R} \llbracket x \rrbracket$ such that

$$
(\mathbb{R}[x], v) \subseteq\left(\mathbb{R} \llbracket x \rrbracket, v_{2}\right)
$$

is not immediate.

Exercise 8

(4 points)
Let $\left(V_{1}, v_{1}\right)$ and $\left(V_{2}, v_{2}\right)$ be valued vector spaces such that $S\left(V_{1}\right)=S\left(V_{2}\right)$. Let $h: V_{1} \rightarrow V_{2}$ be a valuation preserving isomorphism of vector spaces, i.e. for any $a \in V_{1}$, we have $v_{2}(h(a))=v_{1}(a)$. Let $\mathcal{B} \subseteq V_{1} \backslash\{0\}$.
(a) Show that \mathcal{B} is Q-valuation independent if and only if $h(\mathcal{B})$ is Q-valuation independent.
(b) Show that \mathcal{B} is a Q-valuation basis for $\left(V_{1}, v_{1}\right)$ if and only if $h(\mathcal{B})$ is a Q-valuation basis for $\left(V_{2}, v_{2}\right)$.

Exercise 9

(4 points)

Let $\left(V_{1}, v_{1}\right)$ and $\left(V_{2}, v_{2}\right)$ be valued vector spaces such that $S\left(V_{1}\right)=S\left(V_{2}\right)$. Let $\mathcal{B}_{1} \subseteq V_{1} \backslash\{0\}$ be a Q-valuation basis for (V_{1}, v_{1}) and let $\mathcal{B}_{2} \subseteq V_{2} \backslash\{0\}$ be a Q-valuation basis for (V_{2}, v_{2}). Suppose that there exists a valuation preserving bijection

$$
\widetilde{h}: \mathcal{B}_{1} \rightarrow \mathcal{B}_{2} .
$$

Let $h: V_{1} \rightarrow V_{2}$ be the isomorphism obtained by linearly extending \widetilde{h}.
Show that h is valuation preserving.

Exercise 10

(4 points)
Consider the \mathbb{Q}-vector space $(V, v)=\left(\mathbf{H}_{n \in \mathbb{N}} B_{n}, v_{\text {min }}\right)$.
(a) Let $B_{n}=\mathbb{Q}$ for any $n \in \mathbb{N}$.
(i) Describe a maximal \mathbb{Q}-valuation independent set $\mathcal{B} \subseteq V$ such that support (b) is a singleton for any $b \in \mathcal{B}$.
(ii) Describe a maximal \mathbb{Q}-valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is infinite for any $b \in \mathcal{B}$.
(b) Let $B_{n}=\mathbb{R}$ for any $n \in \mathbb{N}$.
(i) Describe a maximal \mathbb{Q}-valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is a singleton for any $b \in \mathcal{B}$.
(ii) Describe a maximal \mathbb{Q}-valuation independent set $\mathcal{B} \subseteq V$ such that support(b) is infinite for any $b \in \mathcal{B}$.
(c) Bonus exercise: For any $n \in \mathbb{N}$, let $B_{2 n-1}=\mathbb{R}$ and $B_{2 n}=\mathbb{Q}$. Describe a maximal \mathbb{Q}-valuation independent set $\mathcal{B} \subseteq V$ such that support (b) is infinite for any $b \in \mathcal{B}$.

The bonus exercise is voluntary and will be awarded extra points. Please hand in your solutions by Thursday, 09 May 2019, 10:00h (postbox 14 in F4).

