Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller


SoSe 2019

## Real Algebraic Geometry II

## Exercise Sheet 4 <br> Pseudo-convergence

## Exercise 11

(4 points)
Recall that a cardinal is an ordinal $\lambda$ which is not in bijection to any $\alpha \in \lambda$.
Let $(\Gamma, \leq)$ be a totally ordered set with $\Gamma \neq \emptyset$.
(a) Let $\lambda=|\Gamma|$ and let $f: \lambda \rightarrow \Gamma$ be a bijective function. Show that for any $\alpha<\lambda$ there exists a well-ordered set $B_{\alpha} \subseteq \Gamma$ such that for any $\beta<\alpha$ there exists $a \in B_{\alpha}$ with $f(\beta) \leq a$.
(b) Show that there exists a well-ordered cofinal subset $A \subseteq \Gamma$.
(c) Let $\operatorname{cf}(\Gamma)$ be the least cardinal such that there exists a well-ordered cofinal subset $A \subseteq \Gamma$ of cardinality $\operatorname{cf}(\Gamma)$. This cardinal is called the cofinality of $\Gamma$. Compute $\operatorname{cf}(\omega), \operatorname{cf}(\omega+1)$ and $\operatorname{cf}(\omega+\omega)$.

## Exercise 12

(4 points)
Let $(V, v)=\left(\mathbf{H}_{n \in \mathbb{N}} \mathbb{R}, v_{\text {min }}\right)$.
(a) Does $(V, v)$ admit a $\mathbb{Q}$-valuation basis?
(b) Does $(V, v)$ admit an $\mathbb{R}$-valuation basis?

Justify your answers!
(Hint: Consider the extension $\left(\bigsqcup_{n \in \mathbb{N}_{0}} \mathbb{R}, v_{\text {min }}\right) \subseteq\left(\mathbf{H}_{n \in \mathbb{N}_{0}} \mathbb{R}, v_{\text {min }}\right)$.)

## Exercise 13

(4 points)
Let $Q$ be a field and let $(V, v)$ be a $Q$-valued vector space. Let

$$
S=\left\{a_{\rho} \mid \rho<\lambda\right\} \subseteq V
$$

be a pseudo-convergent set.
(a) Show that $x \in V$ is a pseudo-limit of $S$ if and only if for any $\rho<\lambda$ we have $v\left(x-a_{\rho}\right)<$ $v\left(x-a_{\rho+1}\right)$.
(b) Suppose that $v(V) \subseteq \mathbb{N}$ and let $x \in V$ be a pseudo-limit of $S$. Show that $x$ is the unique pseudo-limit of $S$.
(c) Let $p \in \mathbb{N}$ be prime, $Q=\mathbb{F}_{p}$ and $(V, v)=\left(\bigsqcup_{\gamma \in \omega+1} \mathbb{F}_{p}, v_{\text {min }}\right)$. Find all pseudo-limits of $\left\{a_{\rho} \mid \rho<\right.$ $\omega\}$ in $V$, where

$$
a_{\rho}: \omega+1 \rightarrow \mathbb{F}_{p}, \beta \mapsto \begin{cases}1 & \text { if } \beta=\rho \\ 0 & \text { otherwise }\end{cases}
$$

## Exercise 14

(4 points)
(a) Consider the $\mathbb{Q}$-valued vector space $(V, v)=\left(\bigsqcup_{n \in \mathbb{N}_{0}} \mathbb{R}, v_{\text {min }}\right)$. For any $\beta<\omega$ define $a_{\beta} \in V$ by

$$
a_{\beta}: \mathbb{N}_{0} \rightarrow \mathbb{R}, n \mapsto \begin{cases}1 & \text { if } n \leq \beta \\ 0 & \text { otherwise }\end{cases}
$$

Show that $\left\{a_{\beta} \mid \beta<\omega\right\}$ is pseudo-convergent but does not have a pseudo-limit in $V$.
(b) Consider the $\mathbb{Q}$-valued vector space $(V, v)=\left(\bigsqcup_{q \in \mathbb{Q}} \mathbb{R}, v_{\min }\right)$. For any $\beta<\omega$ define $a_{\beta} \in V$ by

$$
a_{\beta}: \mathbb{Q} \rightarrow \mathbb{R}, q \mapsto \begin{cases}1 & \text { if } q=\sum_{k=1}^{m} \frac{1}{k(k+1)} \text { for some } m \leq \beta \\ 0 & \text { otherwise }\end{cases}
$$

Let $S=\left\{a_{\beta} \mid \beta<\omega\right\}$.
Show that $S$ is pseudo-convergent and find the breadth $B(S)$ of $S$.

Please hand in your solutions by Thursday, 16 May 2019, 10:00h (postbox 14 in F4).

