Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 4 Pseudo-convergence

Exercise 11 (4 points)

Recall that a cardinal is an ordinal λ which is not in bijection to any $\alpha \in \lambda$. Let (Γ, \leq) be a totally ordered set with $\Gamma \neq \emptyset$.

- (a) Let $\lambda = |\Gamma|$ and let $f: \lambda \to \Gamma$ be a bijective function. Show that for any $\alpha < \lambda$ there exists a well-ordered set $B_{\alpha} \subseteq \Gamma$ such that for any $\beta < \alpha$ there exists $a \in B_{\alpha}$ with $f(\beta) \leq a$.
- (b) Show that there exists a well-ordered cofinal subset $A \subseteq \Gamma$.
- (c) Let $cf(\Gamma)$ be the least cardinal such that there exists a well-ordered cofinal subset $A \subseteq \Gamma$ of cardinality $cf(\Gamma)$. This cardinal is called the **cofinality of** Γ . Compute $cf(\omega)$, $cf(\omega+1)$ and $cf(\omega + \omega).$

Exercise 12

(4 points)

Let $(V, v) = (\mathbf{H}_{n \in \mathbb{N}_0} \mathbb{R}, v_{\min})$.

- (a) Does (V, v) admit a Q-valuation basis?
- (b) Does (V, v) admit an \mathbb{R} -valuation basis?

Justify your answers! (*Hint: Consider the extension* $(\bigsqcup_{n \in \mathbb{N}_0} \mathbb{R}, v_{\min}) \subseteq (\mathbf{H}_{n \in \mathbb{N}_0} \mathbb{R}, v_{\min}).$) Exercise 13 (4 points) Let Q be a field and let (V, v) be a Q-valued vector space. Let

$$S = \{a_{\rho} \mid \rho < \lambda\} \subseteq V$$

be a pseudo-convergent set.

- (a) Show that $x \in V$ is a pseudo-limit of S if and only if for any $\rho < \lambda$ we have $v(x a_{\rho}) < v(x a_{\rho+1})$.
- (b) Suppose that $v(V) \subseteq \mathbb{N}$ and let $x \in V$ be a pseudo-limit of S. Show that x is the unique pseudo-limit of S.
- (c) Let $p \in \mathbb{N}$ be prime, $Q = \mathbb{F}_p$ and $(V, v) = \left(\bigsqcup_{\gamma \in \omega+1} \mathbb{F}_p, v_{\min}\right)$. Find all pseudo-limits of $\{a_\rho \mid \rho < \omega\}$ in V, where

$$a_{\rho} \colon \omega + 1 \to \mathbb{F}_p, \beta \mapsto \begin{cases} 1 & \text{if } \beta = \rho, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 14 (4 points)

(a) Consider the Q-valued vector space $(V, v) = (\bigsqcup_{n \in \mathbb{N}_0} \mathbb{R}, v_{\min})$. For any $\beta < \omega$ define $a_\beta \in V$ by

$$a_{\beta} \colon \mathbb{N}_0 \to \mathbb{R}, n \mapsto \begin{cases} 1 & \text{if } n \leq \beta, \\ 0 & \text{otherwise} \end{cases}$$

Show that $\{a_{\beta} \mid \beta < \omega\}$ is pseudo-convergent but does not have a pseudo-limit in V.

(b) Consider the Q-valued vector space $(V, v) = \left(\bigsqcup_{q \in \mathbb{Q}} \mathbb{R}, v_{\min}\right)$. For any $\beta < \omega$ define $a_{\beta} \in V$ by

$$a_{\beta} \colon \mathbb{Q} \to \mathbb{R}, q \mapsto \begin{cases} 1 & \text{ if } q = \sum_{k=1}^{m} \frac{1}{k(k+1)} \text{ for some } m \leq \beta, \\ 0 & \text{ otherwise.} \end{cases}$$

Let $S = \{a_{\beta} \mid \beta < \omega\}.$

Show that S is pseudo-convergent and find the breadth B(S) of S.

Please hand in your solutions by Thursday, 16 May 2019, 10:00h (postbox 14 in F4).