Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller

Real Algebraic Geometry II

Exercise Sheet 6
 Ordered abelian groups

Exercise 19

(5 points)
Let G be an ordered abelian group. Let $C \subseteq G$ be a convex subgroup and $B=G / C$.
(a) Define the relation $<_{B}$ on B by

$$
g_{1}+C<_{B} g_{2}+C \quad: \Longleftrightarrow \quad\left(g_{2}-g_{1} \notin C \wedge g_{2}-g_{1}>0\right)
$$

for any $g_{1}, g_{2} \in G$. Show that $\left(B,+, 0,<_{B}\right)$ is an ordered abelian group.
(b) Show that the set of convex subgroups of G is totally ordered by the relation \subseteq.
(c) Find a bijective correspondence between convex subgroups of B and convex subgroups $C^{\prime} \subseteq G$ with $C \subseteq C^{\prime}$.
(d) Let D_{1} and D_{2} be convex subgroups of G such that $D_{1} \subseteq D_{2}$ and there are no further convex subgroups between D_{1} and D_{2}. Show that D_{2} / D_{1} has no non-trivial convex subgroups.
(e) Show that G is Archimedean if and only if its only convex subgroups are $\{0\}$ and G.

Exercise 20

(3 points)
Let G be an ordered abelian group and let $x \in G \backslash\{0\}$.
(a) Show that C_{x} and D_{x} are convex subgroups of G with $D_{x} \subsetneq C_{x}$.
(b) Show that D_{x} is the largest proper convex subgroup of C_{x} (with respect to the linear ordering given by \subseteq).
(c) Deduce that the ordered abelian group C_{x} / D_{x} is Archimedean.

Exercise 21

(4 points)
Let G be an ordered abelian group.
(a) Let v be defined as in Lecture 9, Proposition 3.5. Show that v is a valuation on G, i.e. that (G, v) is a valued \mathbb{Z}-module.
(b) Let $x \in G \backslash\{0\}$. Show that

$$
G^{v(x)}=\bigcap\{C \mid C \text { is a convex subgroup of } G \text { and } x \in C\}
$$

and

$$
G_{v(x)}=\bigcup\{C \mid C \text { is a convex subgroup of } G \text { and } x \notin C\}
$$

Conclude that $B_{x}=B(G, v(x))$ and that B_{x} is an Archimedean.

Exercise 22

(4 points)
Let $[\Gamma,\{B(\gamma) \mid \gamma \in \Gamma\}]$ be an ordered family of Archimedean ordered abelian groups. Let

$$
G=\bigsqcup_{\gamma \in \Gamma} B(\gamma)
$$

and define a relation $<_{\text {lex }}$ on G by

$$
0<_{\operatorname{lex}} g: \Longleftrightarrow\left(g \neq 0 \wedge g\left(v_{\min }(g)\right)>0\right)
$$

(a) Show that $\left(G,<_{\text {lex }}\right)$ is an ordered abelian group.
(b) Show that $v_{\text {min }}$ and the natural valuation v on G are equivalent.

Please hand in your solutions by Friday, 31 May 2019, 10:00h (postbox 14 in F4).

