Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 6 Ordered abelian groups

Exercise 19

(5 points)

Let G be an ordered abelian group. Let $C \subseteq G$ be a convex subgroup and B = G/C.

(a) Define the relation \leq_B on B by

$$g_1 + C <_B g_2 + C :\iff (g_2 - g_1 \notin C \land g_2 - g_1 > 0)$$

for any $g_1, g_2 \in G$. Show that $(B, +, 0, <_B)$ is an ordered abelian group.

- (b) Show that the set of convex subgroups of G is totally ordered by the relation \subseteq .
- (c) Find a bijective correspondence between convex subgroups of B and convex subgroups $C' \subseteq G$ with $C \subseteq C'$.
- (d) Let D_1 and D_2 be convex subgroups of G such that $D_1 \subseteq D_2$ and there are no further convex subgroups between D_1 and D_2 . Show that D_2/D_1 has no non-trivial convex subgroups.
- (e) Show that G is Archimedean if and only if its only convex subgroups are $\{0\}$ and G.

Exercise 20

(3 points)

Let G be an ordered abelian group and let $x \in G \setminus \{0\}$.

- (a) Show that C_x and D_x are convex subgroups of G with $D_x \subsetneq C_x$.
- (b) Show that D_x is the largest proper convex subgroup of C_x (with respect to the linear ordering given by \subseteq).
- (c) Deduce that the ordered abelian group C_x/D_x is Archimedean.

Exercise 21

(4 points) Let G be an ordered abelian group.

- (a) Let v be defined as in Lecture 9, Proposition 3.5. Show that v is a valuation on G, i.e. that (G, v) is a valued \mathbb{Z} -module.
- (b) Let $x \in G \setminus \{0\}$. Show that

$$G^{v(x)} = \bigcap \{ C \mid C \text{ is a convex subgroup of } G \text{ and } x \in C \}$$

and

 $G_{v(x)} = \bigcup \{ C \mid C \text{ is a convex subgroup of } G \text{ and } x \notin C \}.$

Conclude that $B_x = B(G, v(x))$ and that B_x is an Archimedean.

Exercise 22 (4 points) Let $[\Gamma, \{B(\gamma) \mid \gamma \in \Gamma\}]$ be an ordered family of Archimedean ordered abelian groups. Let

$$G = \bigsqcup_{\gamma \in \Gamma} B(\gamma)$$

and define a relation $<_{\mathrm{lex}}$ on G by

$$0 <_{\text{lex}} g :\iff (g \neq 0 \land g(v_{\min}(g)) > 0).$$

- (a) Show that $(G, <_{\text{lex}})$ is an ordered abelian group.
- (b) Show that v_{\min} and the natural valuation v on G are equivalent.

Please hand in your solutions by Friday, 31 May 2019, 10:00h (postbox 14 in F4).