Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 7 Valued fields

Exercise 23 (4 points) Let $p \in \mathbb{N}$ be prime. Define the map v_p on \mathbb{Q} as follows:

- Let $v_p(0) = \infty$.
- For any $k \in \mathbb{Z} \setminus \{0\}$, let $v_p(k) = \max \{ \ell \in \mathbb{N}_0 \mid p^{\ell} \text{ divides } k \}.$
- For any $k, m \in \mathbb{Z} \setminus \{0\}$, let $v_p\left(\frac{k}{m}\right) = v_p(k) v_p(m)$.
- (a) Show that v_p is a valuation on \mathbb{Q} .
- (b) Determine R_{v_p} , I_{v_p} , U_{v_p} and K_{v_p} .

Exercise 24 (4 points)

Let $K = \mathbb{R}((X))$.

- (a) Let v_{\min} be the map on K defined in Real Algebraic Geometry I, Lecture 24, Notation 1.4. Show that (K, v_{\min}) is a valued field and determine its value group $G_{v_{\min}}$ and its residue field $K_{v_{\min}}$.
- (b) Consider K as an ordered field with the ordering induced by X < |r| for any $r \in \mathbb{R} \setminus \{0\}$. Let v be the natural valuation on K. Determine the value group G_v and the residue field K_v .
- (c) Show that

$$\varphi \colon G_{v_{\min}} \to G_v, v_{\min}(x) \mapsto v(x)$$

is an order-preserving isomorphism of groups and that

 $\psi \colon K_{v_{\min}} \to K_v, av_{\min} \mapsto av$

is an order-preserving isomorphism of fields.

Please hand in your solutions by Thursday, 06 June 2019, 10:00h (postbox 14 in F4).