Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 8 Hardy fields and Neumann's Lemma

Exercise 25 (4 points) Let H be a Hardy field.

- (a) Recall the definition of the asymptotic equivalence relation \sim on H (Lecture 14, Definition 2.1). Show that \sim coincides with the Archimedean equivalence relation on H.
- (b) Hence, or otherwise, show that $(v(H \setminus \{0\}), +, <)$ is an ordered abelian group and that v is a valuation on H.
- (c) Show that

$$R_{v} = \left\{ f \in H \mid \lim_{x \to \infty} f(x) \in \mathbb{R} \right\},$$

$$I_{v} = \left\{ f \in H \mid \lim_{x \to \infty} f(x) = 0 \right\} \text{ and }$$

$$\mathcal{U}_{v} = \left\{ f \in H \mid \lim_{x \to \infty} f(x) \in \mathbb{R}^{\times} \right\}.$$

Exercise 26

(4 points)

Let G be an ordered abelian group. Let $A, B \subseteq G$ be non-empty and well-ordered subsets. Show that

$$A + B = \{a + b \mid (a, b) \in A \times B\}$$

is a well-ordered subset of G.

Exercise 27

(4 points)

Let k be an Archimedean field and let G be an ordered abelian group.

- (a) Show that $<_{\text{lex}}$ is a field ordering on k((G)), i.e. that for any $a, b, c \in k((G))$ we have
 - if $a <_{\text{lex}} b$, then $a + c <_{\text{lex}} b + c$;
 - if $0 <_{\text{lex}} a$ and $0 <_{\text{lex}} b$, then $0 <_{\text{lex}} ab$.

(b) Let $\varepsilon \in k((G))$ with support $(\varepsilon) \subseteq G^{>0}$. Show that

$$\sum_{n=0}^{\infty} \varepsilon^n \in k((G)) \text{ and } (1-\varepsilon) \left(\sum_{n=0}^{\infty} \varepsilon^n\right) = 1.$$

(c) Let $g_1, g_2 \in G$. Compute $(t^{g_1} + t^{g_2})^{-1}$.

Exercise 28

(4 points)

Let G be a divisible ordered abelian group and let $K = \mathbb{R}(G)$. For any $\varepsilon \in I_v$ define

$$e(\varepsilon) = \sum_{n=0}^{\infty} \frac{\varepsilon^n}{n!}.$$

- (a) Show that e is a well-defined function from I_v to $1 + I_v$.
- (b) Show that e is an order-preserving homomorphism from $(I_v, +, 0, <)$ to $(1 + I_v, \cdot, 1, <)$.
- (c) Bonus exercise: Show that

$$\ell: 1 + I_v \to I_v, 1 + \varepsilon \mapsto \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\varepsilon^n}{n}$$

is the inverse function of e.

The bonus exercise is voluntary and will be awarded extra points. Please hand in your solutions by **Thursday**, 13 June 2019, 10:00h (postbox 14 in F4).