Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Lothar Sebastian Krapp
Simon Müller

SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 9
 Fields of generalized power series

Exercise 29

(4 points)
Let k be an Archimedean field and let G be an ordered abelian group. Let $\mathbb{K}=k((G))$.
(a) Find an order-preserving isomorphism of groups from $v\left(\mathbb{K}^{\times}\right)$to G.
(b) Consider both Archimedean fields k and $\overline{\mathbb{K}}$ as subfields of \mathbb{R}. Let

$$
s=\sum_{g \in G} s(g) t^{g} \in R_{v} \backslash \overline{0}
$$

Show that for the residue \bar{s} of s we have $\bar{s}=s\left(v_{\min }(s)\right)$.
(c) Conclude that $\overline{\mathbb{K}}=k$.

Exercise 30

(4 points)

Let k be an Archimedean field which is square root closed for positive elements, i.e. for any $a \in k^{>0}$, there exists $b \in k$ with $b^{2}=a$. Let G be an ordered abelian group which is 2 -divisible, i.e. for any $g \in G$, there exists $h \in G$ such that $h+h=g$. Let $\mathbb{K}=k((G))$.
(a) Let $\varepsilon \in \mathbb{K}$ with $\operatorname{support}(\varepsilon) \subseteq G^{>0}$.
(i) Let $\alpha \in \mathbb{Q}^{>0}$. Show that

$$
\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{n!} \varepsilon^{n} \in \mathbb{K}
$$

where

$$
(\alpha)_{n}=\prod_{k=0}^{n-1}(\alpha-k)
$$

(ii) Show that

$$
\left(\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}}{n!} \varepsilon^{n}\right)^{2}=1+\varepsilon
$$

(b) Deduce that \mathbb{K} is square root closed for positive elements

Please hand in your solutions by Friday, 21 June 2019, 10:00h (postbox 14 in F4).

