Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Lothar Sebastian Krapp Simon Müller SoSe 2019

Real Algebraic Geometry II

Exercise Sheet 11 Integer parts and convex valuations

Exercise 33

(4 points)

Let K be an ordered field and let Z be an integer part of K.

(a) Show that for any $x \in K$, there exists a unique $z_x \in Z$ with

$$z_x \le x < z_x + 1.$$

(b) Show that ff(Z) is dense in K.

Exercise 34

(3 points)

- (a) Let K be an ordered field. Show that K is Archimedean if and only if \mathbb{Z} is its unique integer part.
- (b) Find an ordered field K and an integer part Z of K such that for any $n, m \in \mathbb{N}$, the polynomial $X^n m$ has a root in ff(Z). Can K be Archimedean? Justify your answer!

Exercise 35

(5 points)

Let K be a field with valuations w_1 and w_2 .

(a) Show that the following are equivalent:

- (i) w_2 is coarser than w_1 .
- (ii) $I_{w_2} \subseteq I_{w_1}$.
- (iii) For any $a, b \in K$, if $w_1(a) \le w_1(b)$, then $w_2(a) \le w_2(b)$.
- (b) Suppose that w_2 is coarser than w_1 . Let

$$\varphi \colon K_{w_2} \to Kw_2, a \mapsto aw_2$$

be the residue map of w_2 , where K_{w_2} denotes the valuation ring and Kw_2 the residue field of (K, w_2) . Show that $\varphi(K_{w_1})$ is a valuation ring of the residue field Kw_2 .

Exercise 36

(4 points)

(a) Let $\mathbb{K} = \mathbb{R}((\mathbb{Q} \times \mathbb{R}))$, where $\mathbb{Q} \times \mathbb{R}$ is ordered lexicographically. Let

$$C = \{(0, z) \mid z \in \mathbb{R}\}$$

- (i) Compute the convex valuation w on \mathbb{K} associated to C.
- (ii) Find the value group and the residue field of (\mathbb{K}, w) .
- (iii) Compute the rank of \mathbb{K} .

(b) Let $K = \mathbb{R}(t)$. Show that for any ordering on K the rank of K is a singleton with $\mathcal{R} = \{K\}$.

Please hand in your solutions by Thursday, 04 July 2019, 10:00h (postbox 14 in F4).