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Exercise Sheet 11
Integer parts and convex valuations

Exercise 33
(4 points)
Let K be an ordered field and let Z be an integer part of K.

(a) Show that for any x ∈ K, there exists a unique zx ∈ Z with

zx ≤ x < zx + 1.

(b) Show that ff(Z) is dense in K.

Exercise 34
(3 points)

(a) Let K be an ordered field. Show that K is Archimedean if and only if Z is its unique integer
part.

(b) Find an ordered field K and an integer part Z of K such that for any n, m ∈ N, the polynomial
Xn −m has a root in ff(Z). Can K be Archimedean? Justify your answer!

Exercise 35
(5 points)
Let K be a field with valuations w1 and w2.

(a) Show that the following are equivalent:

(i) w2 is coarser than w1.
(ii) Iw2 ⊆ Iw1 .
(iii) For any a, b ∈ K, if w1(a) ≤ w1(b), then w2(a) ≤ w2(b).

(b) Suppose that w2 is coarser than w1. Let

ϕ : Kw2 → Kw2, a 7→ aw2

be the residue map of w2, where Kw2 denotes the valuation ring and Kw2 the residue field of
(K, w2). Show that ϕ(Kw1) is a valuation ring of the residue field Kw2.
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Exercise 36
(4 points)

(a) Let K = R((Q× R)), where Q× R is ordered lexicographically. Let

C = {(0, z) | z ∈ R}.

(i) Compute the convex valuation w on K associated to C.
(ii) Find the value group and the residue field of (K, w).
(iii) Compute the rank of K.

(b) Let K = R(t). Show that for any ordering on K the rank of K is a singleton with R = {K}.

Please hand in your solutions by Thursday, 04 July 2019, 10:00h (postbox 14 in F4).
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