Übungen zur Vorlesung Analysis II Blatt 1

Abgabe von: Musterstudent Tutor(in): Mein Lieblingstutor

1	2	Σ
4	14	18

Allgemeiner Hinweis: Für die Bearbeitung dieses Übungsblatts werden alle Resultate bis zum Ende von Kapitel 3 vorausgesetzt. Freiwillige Zusatzaufgaben sind mit einem * gekennzeichnet.

Aufgabe 1.1 (Operatornorm)

[4 Punkte]

Seien E, F, G normierte \mathbb{K} -Vektorräume. Beweisen Sie:

- (i) L(E,F) ist ein K-Vektorraum. Mit der Operatornorm ist L(E,F) ein normierter Raum.
- (ii) Ist F ein Banachraum, so ist L(E, F) vollständig.
- (iii) Seien $A \in L(E, F)$ und $B \in L(F, G)$. Dann gilt $||B \circ A|| \le ||B|| \cdot ||A||$.

Lösung:

- (i) Wir zeigen, dass L(E,F) ein Untervektorraum des \mathbb{K} -Vektorraums aller linearen Abbildungen von E nach F ist. Der Nulloperator $x\mapsto 0$ ist in L(E,F) enthalten. Für $A,B\in L(E,F)$ und $\lambda\in\mathbb{K}$ sind sowohl $A+B\colon x\mapsto Ax+Bx$ als auch $\lambda A\colon x\mapsto \lambda Ax$ stetige lineare Abbildungen. Damit ist L(E,F) unter Addition und Multiplikation mit Skalaren abgeschlossen. Wir zeigen nun, dass L(E,F) ein normierter Raum ist:
 - Positivität: $||A|| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Ax||}{||x||} \ge 0$ für alle $x \in E$.
 - Definitheit: Falls ||A||=0, dann $0=||A||=\sup_{\substack{x\in E\\x\neq 0}}\frac{||Ax||}{||x||}$ und daher ||Ax||=0 für alle $x\in E$ mit $x\neq 0$. Es folgt Ax=0 für alle $x\in E$ mit $x\neq 0$ und schließlich $A\equiv 0$, d.h. A ist der Nulloperator.
 - Homogenität:

$$\|\lambda A\| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|\lambda Ax\|}{\|x\|} = \sup_{\substack{x \in E \\ x \neq 0}} \frac{|\lambda| \cdot \|Ax\|}{\|x\|} = |\lambda| \cdot \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Ax\|}{\|x\|} = |\lambda| \cdot \|A\|.$$

• Dreiecksungleichung:

$$||A + B|| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||(A + B)x||}{||x||} = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Ax + Bx||}{||x||}$$

$$\leq \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Ax|| + ||Bx||}{||x||} \leq \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Ax||}{||x||} + \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Bx||}{||x||} = ||A|| + ||B||.$$

(ii) • Sei $(T_n)_n$ eine Cauchyfolge in L(E,F) und sei $u \in E$. Wir definieren T durch $Tu := \lim_{n \to \infty} T_n u$. Der Grenzwert existiert, da $(T_n u)_n$ eine Cauchyfolge in F ist; es gilt nämlich $||T_n u - T_m u|| = ||(T_n - T_m)u|| \le ||T_n - T_m|| \cdot ||u||$. Da F vollständig ist, ist T wohldefiniert. $T: E \to F$ ist linear, denn es gilt

$$T(\lambda x + \mu y) = \lim_{n \to \infty} T_n(\lambda x + \mu y) = \lim_{n \to \infty} (\lambda T_n x + \mu T_n y)$$
$$= \lambda \lim_{n \to \infty} T_n x + \mu \lim_{n \to \infty} T_n y = \lambda T x + \mu T y$$

für $x, y \in E$ und $\lambda, \mu \in \mathbb{K}$.

• T ist stetig: Sei $\varepsilon > 0$ und sei $M \in \mathbb{N}$, sodass für alle $m, n \geq M$ gilt $||T_n - T_m|| < \varepsilon$. Mit der umgekehrten Dreiecksungleichung erhalten wir für alle $m, n \geq M$: $|||T_n|| - ||T_m||| \leq ||T_n - T_m|| < \varepsilon$. Damit ist $(||T_n||)_n$ eine Cauchy-Folge in \mathbb{R} und konvergiert somit gegen ein $c \in \mathbb{R}$. Da L(E, F) ein normierter Raum ist, ist die Normfunktion stetig. Daraus folgt, dass für alle $x \in E$ gilt:

$$||Tx|| = \left\| \lim_{n \to \infty} T_n x \right\| = \lim_{n \to \infty} ||T_n x|| \le \lim_{n \to \infty} ||T_n|| \, ||x|| = c \, ||x||.$$

Daraus folgt die Stetigkeit von T.

• $T_n \to T$ in L(E, F): Sei $\varepsilon > 0$ und sei $M \in \mathbb{N}$, sodass für alle $m, n \geq M$ gilt $||T_n - T_m|| < \varepsilon$. Aus der Definition der Operatornorm folgt, dass für alle $u \in E$ mit ||u|| = 1 und alle $n, m \geq M$ gilt:

$$||T_n u - T_m u|| < \varepsilon.$$

Sei $u \in E$ mit ||u|| = 1 und sei $n \geq M$. Wir erhalten aufgrund der Stetigkeit der Normfunktion

$$||T_n u - Tu|| = \lim_{m \to \infty} ||T_n u - T_m u|| \le \varepsilon.$$

Insgesamt erhalten wir also für alle $n \geq M$:

$$||T_n - T|| = \sup_{u \in E, ||u|| = 1} ||T_n u - Tu|| \le \varepsilon,$$

wie gewünscht.

(iii) Für eine bessere übersicht bezeichnen wir die Operatornormen auf L(E,F), L(F,G) und L(E,G) mit $\|\cdot\|_{L(E,F)}$ bzw. $\|\cdot\|_{L(E,G)}$ bzw. $\|\cdot\|_{L(E,G)}$.

Aus der Definition der Operatornorm

$$||A||_{L(E,F)} = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Ax||}{||x||}$$

folgt $\frac{\|Ax\|}{\|x\|} \le \|A\|_{L(E,F)}$ und daher $\|Ax\| \le \|A\|_{L(E,F)} \cdot \|x\|$ für alle $x \in E$. Für B gilt analog $\|By\| \le \|B\|_{L(F,G)} \cdot \|y\|$ für alle $y \in F$. Deswegen erhalten wir

$$\|(B \circ A)x\| = \|B(Ax)\| \le \|B\|_{L(F,G)} \cdot \|Ax\| \le \|B\|_{L(F,G)} \cdot \|A\|_{L(E,F)} \cdot \|x\|$$

und

$$\frac{\|(B \circ A)x\|}{\|x\|} \le \|B\|_{L(F,G)} \cdot \|A\|_{L(E,F)}$$

für alle $x \in E$. Schließlich ist

$$||B \circ A||_{L(E,G)} = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||(B \circ A)x||}{||x||} \le |B||_{L(F,G)} \cdot ||A||_{L(E,F)}.$$

Aufgabe 1.2 (Orthogonale Matrizen)

$$[2 + 2 + 2^* + 2^* + 2^* + 4^*]$$
 Punkte

Sei $n \in \mathbb{N}$. Es bezeichne $\mathbb{R}^{n \times n}$ die Menge aller reellen $(n \times n)$ -Matrizen, $\operatorname{GL}(n)$ die Teilmenge aller invertierbaren Matrizen und O(n) die Teilmenge aller orthogonalen Matrizen. Eine Matrixnorm $\|\cdot\|$ auf $\mathbb{R}^{n \times n}$ sei durch

$$||A|| := \sup_{\substack{x \in \mathbb{R}^n \\ x \neq 0}} \frac{||Ax||}{||x||}$$

definiert.

Zeigen Sie:

- (i) Seien $A \in O(n)$ und v eine Spalte von A. Dann gilt ||v|| = 1.
- (ii) O(n) ist kompakt.
- (iii)* Die Determinante det: $\mathbb{R}^{n \times n} \to \mathbb{R}$, $A \mapsto \det(A)$ ist eine stetige Funktion. (Sie dürfen, falls erwünscht, n = 3 annehmen.)
- (iv)* $GL(n) \subset \mathbb{R}^{n \times n}$ ist offen.
- $(v)^*$ Sei $m \in \mathbb{N}$. Dann ist der Rang rk: $\mathbb{R}^{n \times m} \to \mathbb{R}$, $A \mapsto \operatorname{rk}(A)$ eine unterhalbstetige Funktion.
- $(vi)^* O(n)$ besteht aus genau zwei Zusammenhangskomponenten.

(Zur Erinnerung: Eine Matrix $A \in \mathbb{R}^{n \times n}$ ist orthogonal, wenn $A^t A = I_n$ gilt. Hierbei bezeichnet I_n die n-dimensionale Einheitsmatrix und A^t die Transponierte von A.)

Lösung:

(i) Seien $A = (a_i^i)_{1 \le i,j \le n} \in O(n)$ und

$$A^t = \left((a^t)_j^i \right)_{1 \le i, j \le n} = \left(a_i^j \right)_{1 \le i, j \le n}$$

die transponierte von A. Ferner seien $k \in \{1, ..., n\}$ fest und

$$v = \begin{pmatrix} a_k^1 \\ a_k^2 \\ \dots \\ a_k^n \end{pmatrix}$$

die k-te Spalte von A. Aus $A^tA = I_n$ folgt dann

$$||v||^2 = \sum_{i=1}^n a_k^i \cdot a_k^i = \sum_{i=1}^n (a^t)_i^k \cdot a_k^i = \delta_k^k = 1.$$

Hierbei bezeichnet δ^i_j das Kronecker-Delta

$$\delta_j^i = \begin{cases} 1, & \text{falls } i = j; \\ 0, & \text{falls } i \neq j. \end{cases}$$

Daher ist ||v|| = 1.

(ii) Wir identifizieren zunächst den \mathbb{R} -Vektorraum $\mathbb{R}^{n \times n}$ mit dem \mathbb{R} -Vektorraum \mathbb{R}^{n^2} , indem wir eine Matrix $A \in \mathbb{R}^{n \times n}$ auf den Vektor

$$v_A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

abbilden. Hierbei bezeichnet a_j für $j \in \{1, ..., n\}$ die j-te Spalte von A. Da alle Normen auf \mathbb{R}^{n^2} äquivalent sind (siehe Zusatzblatt zur Analysis I/II, Aufgabe 3), genügt es nach dem Satz von Heine-Borel zu zeigen, dass O(n) beschränkt und abgeschlossen ist.

Sei
$$A = (a_j^i)_{1 \le i, j \le n} \in O(n)$$
.

Beschränkheit: Teilaufgabe (i) impliziert $||a_j|| = 1$ für alle $j \in \{1, ..., n\}$. Daraus folgt $||v_A||^2 = ||a_1||^1 + ... + ||a_n||^2 = n$. Bezüglich der euklidischen Norm ist O(n) (als Unterraum von \mathbb{R}^{n^2}) also beschränkt.

Abgeschlossenheit: Wir betrachten die Abbildung

$$f \colon \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$
$$A \mapsto A^t A.$$

Sie ist stetig (und als topologische Abbildung stetig), da jeder Eintrag von A^tA eine polynomiale Funktion in den Einträgen von A ist: Nach der Definition vom Produkt zweier Matrizen ist f schlicht die Komposition von Summen und Produkten. Weiterhin gilt $O(n) = f^{-1}(\{I_n\})$. Da $\{I_n\} \subset \mathbb{R}^{n \times n}$ als endliche Menge abgeschlossen ist (Bemerkung 3.6 (iv)), ist O(n) abgeschlossen.

(iii) Aus der Leibniz-Formel

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_1^{\sigma(1)} a_2^{\sigma(2)} \dots a_n^{\sigma(n)}$$

sieht man, dass die Determinante eine polynomiale Funktion in den Einträgen von A und deshalb stetig ist.

Ebenso kann man mit der Definition der Determinante über die Entwicklung nach Zeilen oder Spalten induktiv argumentieren.

- (iv) Die Determinante ist stetig und $\mathrm{GL}(n)$ ist das Urbild der offenen Teilmenge $(-\infty,0)\cup(0,\infty)$ von $\mathbb R$ unter dieser Abbildung.
- (v) Wie in Aufgabenteil (ii) identifizieren wir $\mathbb{R}^{n \times m}$ mit \mathbb{R}^{nm} und können so auf $\mathbb{R}^{n \times m}$ die euklidische Norm

$$||A|| = \sqrt{\sum_{j=1}^{m} ||a_j||^2}$$

verwenden.

Seien $a \in \mathbb{R}$ und $A = (a_j^i)_{1 \le i \le n, 1 \le j \le m} \in \mathbb{R}^{n \times m}$, sodass $A \in \operatorname{rk}^{-1}((a, \infty))$. Wir setzen $r = \operatorname{rk}(A) > a$. Dann existieren $j_1, \ldots, j_r \in \{1, \ldots, m\}$, sodass die Spalten j_1, \ldots, j_r linear unabhängig sind. Darum gibt es eine Untermatrix

$$M = \begin{pmatrix} a_{j_1}^{i_1} & \dots & a_{j_r}^{i_1} \\ \vdots & \ddots & \vdots \\ a_{j_1}^{i_r} & \dots & a_{j_r}^{i_r} \end{pmatrix}$$

von A mit $i_1, \ldots, i_r \in \{1, \ldots, n\}$, deren Determinante nicht verschwindet. Seien $j_{r+1}, \ldots, j_m \in \{1, \ldots, m\}$ und $i_{r+1}, \ldots, i_m \in \{1, \ldots, n\}$, sodass A genau die Einträge

$$\left\{a_{j_k}^{i_\ell} \colon 1 \le \ell \le n, 1 \le k \le m\right\}$$

hat. (Sprich: a^{i_1}, \ldots, a^{i_n} sind die Zeilen von A und a_{j_1}, \ldots, a_{j_m} sind die Spalten von A.) Aus der Teilaufgabe (iii) wissen wir, dass die Abbildung

$$\det \colon \mathbb{R}^{r \times r} \to \mathbb{R}$$
$$M \mapsto \det(M),$$

stetig ist. Darum existiert ein $\varepsilon > 0$, sodass $\det(C) \neq 0$ für alle $C \in B_{\varepsilon}(M)$. (Hierbei nehmen wir $B_{\varepsilon}(C)$ bezüglich der euklidischen Norm auf \mathbb{R}^{k^2}). Für Matrizen $C \in B_{\varepsilon}(M)$ gilt also $\mathrm{rk}(C) = r$.

Sei nun $D \in B_{\varepsilon}(A)$ beliebig. Dann hat D eine Untermatrix M' von der Form

$$M' = \begin{pmatrix} a_{j_1}^{i_1} + \beta_{j_1}^{i_1} & \dots & a_{j_r}^{i_1} + \beta_{j_1}^{i_1} \\ \vdots & \ddots & \vdots \\ a_{j_1}^{i_r} + \beta_{j_1}^{i_1} & \dots & a_{j_r}^{i_r} + \beta_{j_1}^{i_1} \end{pmatrix},$$

wobei $||M'-M|| \le ||D-A|| < \varepsilon$. Es folgt $r = \operatorname{rk}(M') \le \operatorname{rk}(D)$. Da D beliebig war, gilt also $B_{\varepsilon}(A) \subset \operatorname{rk}^{-1}((a,\infty))$. Folglich ist $\operatorname{rk}^{-1}((a,\infty))$ offen und der Rang ist eine unterhalbstetige Funktion (nach Plenumsübung).

(vi) Aus $AA^t = A^tA = I_n$ folgt $\det(A) \cdot \det(A^t) = \det^2(A) = 1$ und darum $\det(A) = 1$ oder $\det(A) = -1$ für alle $A \in O(n)$. Die Determinante bildet O(n) auf die nicht zusammenhängende Menge $\{-1,1\} \subset \mathbb{R}$ ab und ist nicht konstant, weil es z.B. $I_n, J_n \in O(n)$ (wobei wir J_n erhalten, indem wir die erste Zeile von I_n mit -1 multiplizieren) und $\det(I_n) = 1$ und $\det(I_n) = -1$ gilt. Also ist O(n) nicht zusammenhängend (wegen (iii) und Theorem 3.75). Damit besteht O(n) aus mindestens zwei Zusammenhangskomponenten.

Seien $SO(n) := \{A \in O(n) : \det(A) = 1\}$ und $O(n)^- := \{A \in O(n) : \det(A) = -1\}$. Beweisidee für den Wegzusammenhang: Man multipliziere die Matrix $A \in SO(n)$ mit Drehmatrizen $B_1, \ldots, B_n \in O(n)$, sodass

$$B_{1} \cdot A = \begin{pmatrix} 1 & a_{2}^{1} & a_{3}^{1} & \dots & a_{n}^{1} \\ 0 & a_{2}^{2} & a_{3}^{2} & & \vdots \\ \vdots & a_{2}^{3} & a_{3}^{3} & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ 0 & a_{2}^{n} & a_{3}^{n} & \dots & a_{n}^{n} \end{pmatrix}, B_{2} \cdot B_{1} \cdot A = \begin{pmatrix} 1 & 0 & a_{3}^{1} & \dots & a_{n}^{1} \\ 0 & 1 & a_{3}^{2} & & \vdots \\ \vdots & 0 & a_{3}^{3} & & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{3}^{n} & \dots & a_{n}^{n} \end{pmatrix}, \dots$$

und schließlich $B_n \cdots B_1 \cdot A = I_n$. Damit wird jede Matrix in SO(n) mit der Einheitsmatrix I_n verbunden.

Da die Multiplikation mit der Diagonalmatrix J_n einen Homöomorphismus von SO(n) mit seinem Komplement $O(n)^-$ in der O(n) liefert, ist auch Letzteres zusammenhängend.

Abgabe: Bis Freitag, 24. April 2020, 09:54 Uhr, per E-Mail an die Tutorin / den Tutor. Wir bitten die allgemeinen Hinweise zur Abgabe von Lösungen (siehe Homepage) zu beachten.