Übungen zur Vorlesung Analysis II Blatt 7

Abgabe von: Mein Name Tutor(in): Mein Lieblingstutor

1	2	3	4	Σ

Allgemeiner Hinweis: Für die Bearbeitung dieses Übungsblatts werden alle Resultate bis einschließlich Beispiel 5.57 vorausgesetzt. Freiwillige Zusatzaufgaben sind mit einem * gekennzeichnet. Alle Aussagen sind stets zu beweisen.

Aufgabe 7.1 (Integration)

[1 + 1 + 1 + 1] Punkte

Bestimmen Sie:

(a)
$$\int_{I} \frac{18e^{3x} + 15e^{2x} - 4e^{x}}{(3e^{x} + 1)^{2} \cdot (e^{x} - 2)} dx, I = \left[\log\left(\frac{8}{3}\right), \log(3) \right].$$

(b)
$$\int_{0}^{\infty} x^3 \cdot e^{-x^2} dx.$$

(c)
$$\int_{-\sqrt{\frac{\pi}{2}}}^{\sqrt{\pi}} \cos(t^2) \cdot |t| dt.$$

(d)
$$\int \sin(\theta) \cdot \cos(\theta) d\theta$$
.

Lösung:

Aufgabe 7.2 (Integralidentität)

[4 Punkte]

Sei $f \in C^0(\mathbb{R})$. Zeigen Sie, dass für alle $x \in \mathbb{R}$ die Identität

$$\int_{0}^{x} f(t)(x-t) dt = \int_{0}^{x} \left(\int_{0}^{u} f(t) dt \right) du.$$

gilt.

Lösung:

(i) Seien $a, b \in \mathbb{R}$ mit a < b und sei $f \in C^1([a, b])$ mit f(a) = 0 und $f'(x) \ge 0$ für alle $x \in [a, b]$. Beweisen Sie:

$$\int_{a}^{b} |ff'| \le \frac{b-a}{2} \int_{a}^{b} (f')^{2}.$$

(Hinweis: Wenden Sie die Höldersche Ungleichung auf $1 \cdot f'$ an.)

(ii)* Beweisen Sie, dass die obige Ungleichung auch ohne die Annahme $f'(x) \ge 0$ für alle $x \in [a, b]$ richtig bleibt.

Lösung:

Aufgabe 7.4 (Schnell oszillierende Funktionen)

[4 Punkte]

Seien $a,b \in \mathbb{R}$ mit a < b und sei $f \in R([a,b],\mathbb{R})$. Zeigen Sie:

$$\lim_{k \to \infty} \int_{a}^{b} f(x) \sin(kx) \, dx = 0.$$

(Hinweis: Betrachte Sie zunächst den Fall, dass f eine Treppenfunktion ist.)

Lösung:

Abgabe: Bis **Freitag, 05. Juni 2020, 09:54 Uhr**, direkt an die Tutorin / den Tutor. Wir bitten die allgemeinen Hinweise zur Abgabe von Lösungen (siehe Homepage) zu beachten.