Übungen zur Vorlesung Analysis II Blatt 9

Abgabe von: Mein Name Tutor(in): Mein Lieblingstutor

1	2	3	4	Σ

Allgemeiner Hinweis: Für die Bearbeitung dieses Übungsblatts werden alle Resultate bis einschließlich Bemerkung 6.3 vorausgesetzt. Alle Aussagen sind stets zu beweisen.

Aufgabe 9.1 (Gammafunktion)

[4 Punkte]

Die Gammafunktion $\Gamma \colon \mathbb{R}_{>0} \to \mathbb{R}$ ist durch

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

definiert.

Zeigen Sie:

- (i) Γ ist wohldefiniert, d. h. das uneigentliche Integral $\int_0^\infty e^{-t}t^{x-1} dt$ konvergiert für alle x > 0.
- (ii) Es gilt $\Gamma(x+1) = x\Gamma(x)$ für alle $x \in \mathbb{R}_{>0}$ und $\Gamma(n+1) = n!$ für alle $n \in \mathbb{N}$.
- (iii) Γ ist unendlich oft differenzierbar mit

$$\Gamma^{(n)}(x) = \int_0^\infty (\log t)^n e^{-t} t^{x-1} dt$$

für alle $n \in \mathbb{N}$ und alle x > 0.

Lösung:

Aufgabe 9.2 (Definition der Ableitung)

[2 + 2 Punkte]

(a) Seien E, F Banachräume, sei $\Omega \subset E$ offen und sei $f: \Omega \to F$ in $x_0 \in \Omega$ differenzierbar. Zeigen Sie, dass es *genau* eine Abbildung $A \in L(E, F)$ gibt, die

$$f(x) = f(x_0) + A \langle x - x_0 \rangle + o(||x - x_0||)$$

für alle $x \in \Omega$ erfüllt.

(Dies zeigt, dass die Ableitung wohldefiniert ist.)

(b) Sei

$$g \colon \mathbb{R}^3 \to \mathbb{R}^2, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} y(x+z)^2 + 7 \\ z + \frac{1}{3}(x+y)^3 \end{pmatrix}.$$

Zeigen Sie, dass g in \mathbb{R}^3 differenzierbar ist, und finden Sie die Ableitung Df von f.

Lösung:

(i) Seien $u,v\colon\mathbb{R}^2\to\mathbb{R}$ und sei $f\colon\mathbb{C}\to\mathbb{C}$ eine differenzierbare Funktion, die für alle $x,y\in\mathbb{R}$ durch

$$f(x+iy) = u(x,y) + iv(x,y)$$

gegeben ist.

Zeigen Sie, dass u und v partiell differenzierbar sind und die beiden Gleichungen

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 und $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

erfüllen. Folgern Sie, dass für alle $x_0, y_0 \in \mathbb{R}$ die Ableitung von f in $x_0 + iy_0$ durch

$$f'(x_0 + iy_0) \langle u \rangle = \left(\frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) \right) \cdot u$$

für alle $u \in \mathbb{C}$ gegeben ist.

(Hinweis: Betrachten Sie die beiden Differenzenquotienten $\frac{f(z+t)-f(z)}{|t|}$ und $\frac{f(z+it)-f(z)}{|it|}$ für $z \in \mathbb{C}$ und $t \in \mathbb{R}$.)

(ii) Zeigen Sie, dass $k \colon \mathbb{C} \to \mathbb{C}, \ z \mapsto \overline{z}$ nicht differenzierbar ist.

Lösung:

Aufgabe 9.4 (Stetigkeit und Differenzierbarkeit)

[4 Punkte]

- Seien E und F Banachräume.
 - (i) Sei $\Omega \subset E$ offen und sei $f \colon \Omega \to F$ in $x_0 \in \Omega$ differenzierbar. Zeigen Sie, dass f in x_0 stetig ist.
- (ii) Sei Ω wie in Definition 5.71 (i) und sei $f : \Omega \to E$ differenzierbar in $x_0 \in \Omega$. Zeigen Sie, dass f in x_0 partiell differenzierbar ist.
- (iii) Sei

$$g \colon \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{falls } (x,y) \neq (0,0), \\ 0, & \text{falls } x = y = 0. \end{cases}$$

Zeigen Sie, dass g partiell differenzierbar, aber nicht stetig ist.

 $(Insbesondere\ ist\ g\ partiell\ differenzierbar,\ aber\ nicht\ differenzierbar.)$

Lösung:

Abgabe: Bis **Freitag, 19. Juni 2020, 09:54 Uhr**, direkt an die Tutorin / den Tutor. Wir bitten die allgemeinen Hinweise zur Abgabe von Lösungen (siehe Homepage) zu beachten.