Tamm's theorem for log-analytic functions

Andre Opris

University of Passau

October 10, 2018

э

Contents

(1) Important o-minimal structures on the real field.

- (2) Well known result: The parametric version of Tamm's theorem in the structure $\mathbb{R}_{\mathsf{an}}.$
- (3) Counterexample for this theorem in the structure $\mathbb{R}_{an,exp}$.
- (4) Main theorem: The parametric version of Tamm's theorem for log-analytic functions.
- (5) Proof of the "Main theorem".

Important o-minimal structures on the real field

- \mathbb{R} : The pure real field.
- R_{an}: The real field augmented by restricted analytic functions. A
 function f : ℝⁿ → ℝ is called restricted analytic if it is of the form

$$f(x) := \begin{cases} p(x), \text{ if } x \in [-1,1]^n, \\ 0 \text{ else.} \end{cases},$$

where p(x) is a power series which converges on a neighbourhood of $[-1,1]^n$. The definable sets and functions are exactly the globally subanalytic ones.

• $\mathbb{R}_{an,exp}$: The structure \mathbb{R}_{an} augmented by the exponential function exp.

A parametric result of Tamm's theorem for \mathbb{R}_{an}

L. van den Dries and C. Miller have shown the following theorem:

Theorem (A parametric version of Tamm's theorem)

- Let $f : \mathbb{R}^{n+m} \to \mathbb{R}$ be definable in \mathbb{R}_{an} . Then there exists $N \in \mathbb{N}$ such that for all $(x_0, y_0) \in \mathbb{R}^{n+m}$, if $y \mapsto f(x_0, y)$ is C^N in a neighbourhood of y_0 , then $y \mapsto f(x_0, y)$ is real analytic in a neighbourhood of y_0 .
- The set $\{(x, y) \in \mathbb{R}^{n+m} \mid f(x, -) \text{ is real analytic at } y\}$ is definable in \mathbb{R}_{an} .

Question: Do this two parts of the theorem hold in $\mathbb{R}_{an,exp}$? \Rightarrow In general not. Counterexample to the first claim in $\mathbb{R}_{an,exp}$.

• Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) := \begin{cases} xe^{-\frac{1}{y^2}}, & \text{if } y > 0, \\ 0 & \text{else.} \end{cases}$$

• For $x \neq 0$, f(x, -) is C^{∞} , but not real analytic at y = 0.

Counterexample to the second claim in $\mathbb{R}_{an,exp}$

Consider the function

$$f(x,y):= \left\{ \begin{array}{l} |y|^{\frac{1}{x}}, \mbox{ if } x>0 \mbox{ and } y\neq 0, \\ 0 \mbox{ else.} \end{array} \right.$$

and the set

$${\mathcal A}:=\{(x,y)\in {\mathbb R}^2\mid f(x,-) ext{ is real analytic at }y\}.$$

We see that

$$M := \{x \in \mathbb{R} \mid f(x, -) \text{ is real analytic at } y = 0\}$$

is not definable in $\mathbb{R}_{an,exp}$. So A isn't definable in $\mathbb{R}_{an,exp}$ as well.

Remark

Tamm's theorem doesn't hold for C^{∞} instead of real analytic in general.

Main Question: Is there a natural class of functions which are definable in the structure $\mathbb{R}_{an,exp}$ such that the parametric version of Tamm's theorem holds?

Log-analytic functions

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$ be definable in $\mathbb{R}_{an,exp}$.

Definition (log-analytic functions)

- *f* is log-analytic of type 0, if *f* is the restriction of a globally subanalytic function on *X*.
- We call a function f : X → ℝ log-analytic of type r ∈ ℕ, if there is a decomposition C of X in analytic cells definable in ℝ_{an,exp} such that for all C ∈ C

$$f(x) = F(g_1(x), ..., g_l(x), \log(g_{l+1}(x)), ..., \log(g_m(x))),$$

where F is globally subanalytic and $g_1, ..., g_m : C \to \mathbb{R}$ are log-analytic functions of type less than r. There is a $i \in \{l + 1, ..., m\}$ such that g_i is log-analytic of type r - 1.

・ロト ・ 一下・ ・ 日 ・

Main theorem

Main theorem

- Let $f : \mathbb{R}^{n+m} \to \mathbb{R}$ be a log-analytic function. Then there exists $N \in \mathbb{N}$ such that for all $(x_0, y_0) \in \mathbb{R}^{n+m}$ if $y \mapsto f(x_0, y)$ is C^N in a neighbourhood of y_0 then $y \mapsto f(x_0, y)$ is real analytic in a neighbourhood of y_0 .
- The set M := {(x, y) ∈ ℝ^{n+m} | f(x, -) is real analytic } is definable in ℝ_{an,exp}.

Convention

"Definable" means definable in $\mathbb{R}_{an,exp}$.

æ

< (17) × <

Theorem (Lion/Rolin preparation for log-analytic functions)

Let $X \subseteq \mathbb{R}^{n+1}$ definable in $\mathbb{R}_{an,exp}$ and $f : X \to \mathbb{R}$ a log-analytic function. Then there is a $r \in \mathbb{N}$ and a decomposition C of X into definable analytic cells such that for all $C \in C$

$$f(x, y) = A(x)y_0^{q_0} \cdot ... \cdot y_r^{q_r} U(x, y_0, ..., y_r),$$

where

$$y_0 = |y - \Theta_0(x)|, y_1 = |\log(y_0) - \Theta_1(x)|, ..., y_r = |\log(y_{r-1}) - \Theta_r(x)|$$

such that $A, \Theta_0, ..., \Theta_r$ are log-analytic functions on the base of C, U is a special unit in $y_0, ..., y_r$, $q_i \in \mathbb{Q}$ and $\Theta_i \equiv 0$ or $y_i \leq M |\Theta_i|$ for all i and a $M \in \mathbb{R}$.

Proof steps of the "Main Theorem"

Conclusion

Let $f : A \times (0,1) \to \mathbb{R}$ a log-analytic function with $A \subseteq \mathbb{R}^m$. There are definable sets $A_1, ..., A_m$ with $A = \bigcup A_i$, definable functions $h_1, ..., h_m$ with $h_i : A_i \to (0,1)$ and log-analytic functions $f_1, ..., f_m$ such that f_i is prepared and $f = f_i$ holds on $(0, h_i)$. Here

 $(0, h_i) := \{(x, y) \mid x \in A_i, 0 < y < h_i(x)\}$ for $i \in \{1, ..., M\}$.

Reduction of real analyticity to dimension one: Let $U \subseteq \mathbb{R}^n$ and $f: U \to \mathbb{R}$ be a log-analytic function. Let $x \in U$ and $y \in \mathbb{R}^n$. We consider the function $t \mapsto f(x + yt)$ in a small interval around zero.

- We call f G^k at x, if $t \mapsto f(x + yt)$ is C^k at t = 0 for all $y \in \mathbb{R}^n$ and $y \mapsto \frac{d^k f(x+yt)}{dt^k}(0) : \mathbb{R}^n \to \mathbb{R}$ is given by a homogeneous polynomial in y of degree k.
- If f is G^k for all $k \in \mathbb{N}$, then f is called G^{∞} .

Lemma (van den Dries/Miller)

f is real analytic at *x* if and only if *f* is G^{∞} at *x* and there exists $\epsilon > 0$ such that for all $y \in \mathbb{R}^n$ with |y| < 1 the function $t \mapsto f(x + yt)$ is real analytic on $(-\epsilon, \epsilon)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition (Flatness)

Let $U \subseteq \mathbb{R}^n$ be open and $a \in U$. Let $f : U \to \mathbb{R}$ be a function. We call fN-flat at a if f is C^N at a and all partial derivatives of f of order less than N vanish at a. We call f flat at a if all partial derivatives vanish at a.

Lemma

Let $A \subseteq \mathbb{R}^n$ definable and $f : A \to \mathbb{R}$ be a log-analytic function. Then there exists $N \in \mathbb{N}$ such that for all $(x, y) \in A$ with $y \in int(A_x)$ the following holds:

f is N-flat at a $\Rightarrow f(x,-) \equiv 0$ in a neighbourhood of y on A_x .

Conclusions

Let $U \subseteq \mathbb{R}^n$ be open and definable connected and $(f_i)_{i \in \mathbb{N}} C^{\infty}$ fucktions which are log-analytic on U. Then the following holds:

- (1) f_i is flat at $a_0 \in U \Rightarrow f_i \equiv 0$ on U.
- (2) Let $Z(f_i) := \{x \in U \mid f_i(x) = 0\}$. Then there exists $M \in \mathbb{N}$, such that $\bigcap_{i \in \mathbb{N}} Z(f_i) = \bigcap_{i \leq M} Z(f_i)$ holds.
 - Reduce the property G^k on the zero set of a definable function: f(x,-) is G^k at y if and only if there is a certain definable C^{∞} log-analytic function $w_k : \mathbb{R}^{n+m} \times \mathbb{R}^n \to \mathbb{R}$ with $w_k(x, y, z) = 0$ for all $z \in \mathbb{R}^n$.
 - There exists $N \in \mathbb{N}$ such that for all $(x, y) \in \mathbb{R}^{n+m}$ the log-analytic function f(x, -) is G^N at y if and only if f(x, -) is G^∞ at y.

- 本間 と く ヨ と く ヨ と 二 ヨ

Main step: Consider the definable function $F : \mathbb{R}^{m+n} \times \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$F(x, y, z, t) := f(x, y + tz)$$

Set v := (x, y, z).

Lemma

There is a $N \in \mathbb{N}$, so that for all $v \in \mathbb{R}^{n+m} \times \mathbb{R}^n$ holds: F(v, -) is C^N at t = 0 if and only if F(v, -) is real analytic at t = 0.

Sketch of proof:

• Apply the Lion/Rolin preparation theorem on F in the variable t:

$$F(v,-) := A(v)t_0^{q_0} \cdot ... \cdot t_r^{q_r} U(v, t_0, ..., t_r)$$

- We get a multidimensional Puiseux-series in the Variables $t_1, ..., t_r$.
- Big step: We can find a function g, which is real analytic at t = 0, so that F g is N-flat for all N ∈ N. ⇒ F g ≡ 0 at a neighbourhood of 0. ⇒ F(v, -) is real analytic at t = 0.