# Tamm's theorem for log-analytic functions 

Andre Opris

University of Passau
October 10, 2018

## Contents

(1) Important o-minimal structures on the real field.
(2) Well known result: The parametric version of Tamm's theorem in the structure $\mathbb{R}_{\text {an }}$.
(3) Counterexample for this theorem in the structure $\mathbb{R}_{\mathrm{an}, \exp }$.
(4) Main theorem: The parametric version of Tamm's theorem for log-analytic functions.
(5) Proof of the "Main theorem".

## Important o-minimal structures on the real field

- $\mathbb{R}$ : The pure real field.
- $\mathbb{R}_{\text {an }}$ : The real field augmented by restricted analytic functions. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called restricted analytic if it is of the form

$$
f(x):=\left\{\begin{array}{l}
p(x), \text { if } x \in[-1,1]^{n} \\
0 \text { else }
\end{array}\right.
$$

where $p(x)$ is a power series which converges on a neighbourhood of $[-1,1]^{n}$. The definable sets and functions are exactly the globally subanalytic ones.

- $\mathbb{R}_{\text {an, exp }}$ : The structure $\mathbb{R}_{\mathrm{an}}$ augmented by the exponential function exp.


## A parametric result of Tamm's theorem for $\mathbb{R}_{\mathrm{an}}$

L. van den Dries and C. Miller have shown the following theorem:

Theorem (A parametric version of Tamm's theorem)

- Let $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ be definable in $\mathbb{R}_{\mathrm{an}}$. Then there exists $N \in \mathbb{N}$ such that for all $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{n+m}$, if $y \mapsto f\left(x_{0}, y\right)$ is $C^{N}$ in a neighbourhood of $y_{0}$, then $y \mapsto f\left(x_{0}, y\right)$ is real analytic in a neighbourhood of $y_{0}$.
- The set $\left\{(x, y) \in \mathbb{R}^{n+m} \mid f(x,-)\right.$ is real analytic at $\left.y\right\}$ is definable in $\mathbb{R}_{\text {an }}$.

Question: Do this two parts of the theorem hold in $\mathbb{R}_{\mathrm{an}, \exp }$ ? $\Rightarrow$ In general not.

## Counterexample to the first claim in $\mathbb{R}_{\text {an, exp }}$.

- Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y):=\left\{\begin{array}{l}
x e^{-\frac{1}{y^{2}}}, \text { if } y>0 \\
0 \text { else }
\end{array}\right.
$$

- For $x \neq 0, f(x,-)$ is $C^{\infty}$, but not real analytic at $y=0$.


## Counterexample to the second claim in $\mathbb{R}_{\mathrm{an}, \exp }$

- Consider the function

$$
f(x, y):=\left\{\begin{array}{l}
|y|^{\frac{1}{x}}, \text { if } x>0 \text { and } y \neq 0 \\
0 \text { else }
\end{array}\right.
$$

and the set

$$
A:=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x,-) \text { is real analytic at } y\right\} .
$$

- We see that

$$
M:=\{x \in \mathbb{R} \mid f(x,-) \text { is real analytic at } y=0\}
$$

is not definable in $\mathbb{R}_{\text {an, } \exp }$. So $A$ isn't definable in $\mathbb{R}_{\mathrm{an}, \exp }$ as well.

## Remark

Tamm's theorem doesn't hold for $C^{\infty}$ instead of real analytic in general.

Main Question: Is there a natural class of functions which are definable in the structure $\mathbb{R}_{\mathrm{an}, \exp }$ such that the parametric version of Tamm's theorem holds?

## Log-analytic functions

Let $X \subseteq \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$ be definable in $\mathbb{R}_{\text {an, exp }}$.

## Definition (log-analytic functions)

- $f$ is log-analytic of type 0 , if $f$ is the restriction of a globally subanalytic function on $X$.
- We call a function $f: X \rightarrow \mathbb{R} \log$-analytic of type $r \in \mathbb{N}$, if there is a decomposition $\mathcal{C}$ of $X$ in analytic cells definable in $\mathbb{R}_{\text {an, exp }}$ such that for all $C \in \mathcal{C}$

$$
f(x)=F\left(g_{1}(x), \ldots, g_{l}(x), \log \left(g_{I+1}(x)\right), \ldots, \log \left(g_{m}(x)\right)\right)
$$

where $F$ is globally subanalytic and $g_{1}, \ldots, g_{m}: C \rightarrow \mathbb{R}$ are log-analytic functions of type less than $r$. There is a $i \in\{I+1, \ldots, m\}$ such that $g_{i}$ is log-analytic of type $r-1$.

## Main theorem

## Main theorem

- Let $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ be a log-analytic function. Then there exists $N \in \mathbb{N}$ such that for all $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{n+m}$ if $y \mapsto f\left(x_{0}, y\right)$ is $C^{N}$ in a neighbourhood of $y_{0}$ then $y \mapsto f\left(x_{0}, y\right)$ is real analytic in a neighbourhood of $y_{0}$.
- The set $M:=\left\{(x, y) \in \mathbb{R}^{n+m} \mid f(x,-)\right.$ is real analytic $\}$ is definable in $\mathbb{R}_{\text {an, exp }}$.


## Convention

"Definable" means definable in $\mathbb{R}_{\text {an, exp }}$.

## Proof of the "Main theorem"

Theorem (Lion/Rolin preparation for log-analytic functions)
Let $X \subseteq \mathbb{R}^{n+1}$ definable in $\mathbb{R}_{\mathrm{an}, \exp }$ and $f: X \rightarrow \mathbb{R}$ a log-analytic function. Then there is a $r \in \mathbb{N}$ and a decomposition $\mathcal{C}$ of $X$ into definable analytic cells such that for all $C \in \mathcal{C}$

$$
f(x, y)=A(x) y_{0}{ }^{q_{0}} \cdot \ldots \cdot y_{r}{ }^{q_{r}} U\left(x, y_{0}, \ldots, y_{r}\right)
$$

where

$$
y_{0}=\left|y-\Theta_{0}(x)\right|, y_{1}=\left|\log \left(y_{0}\right)-\Theta_{1}(x)\right|, \ldots, y_{r}=\left|\log \left(y_{r-1}\right)-\Theta_{r}(x)\right|
$$

such that $A, \Theta_{0}, \ldots, \Theta_{r}$ are log-analytic functions on the base of $C, U$ is a special unit in $y_{0}, \ldots, y_{r}, q_{i} \in \mathbb{Q}$ and $\Theta_{i} \equiv 0$ or $y_{i} \leq M\left|\Theta_{i}\right|$ for all $i$ and a $M \in \mathbb{R}$.

## Proof steps of the "Main Theorem"

## Conclusion

Let $f: A \times(0,1) \rightarrow \mathbb{R}$ a log-analytic function with $A \subseteq \mathbb{R}^{m}$. There are definable sets $A_{1}, \ldots, A_{m}$ with $A=\bigcup A_{i}$, definable functions $h_{1}, \ldots, h_{m}$ with $h_{i}: A_{i} \rightarrow(0,1)$ and log-analytic functions $f_{1}, . ., f_{m}$ such that $f_{i}$ is prepared and $f=f_{i}$ holds on $\left(0, h_{i}\right)$. Here

$$
\left(0, h_{i}\right):=\left\{(x, y) \mid x \in A_{i}, 0<y<h_{i}(x)\right\} \text { for } i \in\{1, \ldots, M\} .
$$

## Proof of the "Main theorem"

Reduction of real analyticity to dimension one: Let $U \subseteq \mathbb{R}^{n}$ and $f: U \rightarrow \mathbb{R}$ be a log-analytic function. Let $x \in U$ and $y \in \mathbb{R}^{n}$. We consider the function $t \mapsto f(x+y t)$ in a small intervall around zero.

- We call $\mathrm{f} G^{k}$ at $x$, if $t \mapsto f(x+y t)$ is $C^{k}$ at $t=0$ for all $y \in \mathbb{R}^{n}$ and $y \mapsto \frac{d^{k} f(x+y t)}{d t^{k}}(0): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by a homogeneous polynomial in $y$ of degree $k$.
- If $f$ is $G^{k}$ for all $k \in \mathbb{N}$, then $f$ is called $G^{\infty}$.


## Lemma (van den Dries/Miller)

$f$ is real analytic at $x$ if and only if $f$ is $G^{\infty}$ at $x$ and there exists $\epsilon>0$ such that for all $y \in \mathbb{R}^{n}$ with $|y|<1$ the function $t \mapsto f(x+y t)$ is real analytic on $(-\epsilon, \epsilon)$.

## Proof of the "Main theorem"

## Definition (Flatness)

Let $U \subseteq \mathbb{R}^{n}$ be open and $a \in U$. Let $f: U \rightarrow \mathbb{R}$ be a function. We call $f$ $N$-flat at $a$ if $f$ is $C^{N}$ at $a$ and all partial derivatives of $f$ of order less than $N$ vanish at $a$. We call $f$ flat at $a$ if all partial derivatives vanish at $a$.

## Lemma

Let $A \subseteq \mathbb{R}^{n}$ definable and $f: A \rightarrow \mathbb{R}$ be a log-analytic function. Then there exists $N \in \mathbb{N}$ such that for all $(x, y) \in A$ with $y \in \operatorname{int}\left(A_{x}\right)$ the following holds:
$f$ is $N$-flat at a $\Rightarrow f(x,-) \equiv 0$ in a neighbourhood of $y$ on $A_{x}$.

## Proof of the "Main theorem"

## Conclusions

Let $U \subseteq \mathbb{R}^{n}$ be open and definable connected and $\left(f_{i}\right)_{i \in \mathbb{N}} C^{\infty}$ fucktions which are log-analytic on $U$. Then the following holds:
(1) $f_{i}$ is flat at $a_{0} \in U \Rightarrow f_{i} \equiv 0$ on $U$.
(2) Let $Z\left(f_{i}\right):=\left\{x \in U \mid f_{i}(x)=0\right\}$. Then there exists $M \in \mathbb{N}$, such that $\bigcap_{i \in \mathbb{N}} Z\left(f_{i}\right)=\bigcap_{i \leq M} Z\left(f_{i}\right)$ holds.

- Reduce the property $G^{k}$ on the zero set of a definable function: $f(x,-)$ is $G^{k}$ at $y$ if and only if there is a certain definable $C^{\infty}$ log-analytic function $w_{k}: \mathbb{R}^{n+m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $w_{k}(x, y, z)=0$ for all $z \in \mathbb{R}^{n}$.
- There exists $N \in \mathbb{N}$ such that for all $(x, y) \in \mathbb{R}^{n+m}$ the log-analytic function $f(x,-)$ is $G^{N}$ at $y$ if and only if $f(x,-)$ is $G^{\infty}$ at $y$.


## Proof of the "Main theorem"

Main step: Consider the definable function $F: \mathbb{R}^{m+n} \times \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
F(x, y, z, t):=f(x, y+t z)
$$

Set $v:=(x, y, z)$.

## Lemma

There is a $N \in \mathbb{N}$, so that for all $v \in \mathbb{R}^{n+m} \times \mathbb{R}^{n}$ holds: $F(v,-)$ is $C^{N}$ at $t=0$ if and only if $F(v,-)$ is real analytic at $t=0$.

## Proof of the "Main theorem"

## Sketch of proof:

- Apply the Lion/Rolin preparation theorem on $F$ in the variable $t$ :

$$
F(v,-):=A(v) t_{0}^{q_{0}} \cdot \ldots \cdot t_{r}^{q_{r}} U\left(v, t_{0}, \ldots, t_{r}\right)
$$

- We get a multidimensional Puiseux-series in the Variables $t_{1}, \ldots, t_{r}$.
- Big step: We can find a function $g$, which is real analytic at $t=0$, so that $F-g$ is $N$-flat for all $N \in \mathbb{N} . \Rightarrow F-g \equiv 0$ at a neighbourhood of 0 . $\Rightarrow F(v,-)$ is real analytic at $t=0$.

